Deep Geophysical Anomalies Beneath the Changbaishan Volcano

Subsurface imaging is key to understanding the origin of intraplate volcanoes. The Changbaishan volcano, located about 2,000 km away from the western Pacific subduction zone, has several debated origins. To investigate this, we compared regional seismic tomography with the electrical resistivity results and obtained high‐resolution 1D and quasi‐2D velocity‐depth profiles. We show that the upper mantle is characterized by two anomalies exhibiting distinct features which cannot be explained by the same mechanism. We document a localized low‐velocity anomaly atop the 410‐km discontinuity, where the P‐wave velocity is reduced more than that of the S‐wave (i.e., lower Vp/Vs). We propose that this anomaly is caused by the reduction of the effective moduli during the phase transformation of olivine. The other anomaly, located between 300 and 370 km depth, reveals a significant reduction of the S‐wave velocity (i.e., higher Vp/Vs), associated with a reduction of the electrical resistivity, altogether consistent with partial melting.

[1]  D. Giardini,et al.  Evidence for basalt enrichment in the mantle transition zone from inversion of triplicated P- and S-waveforms , 2022, Earth and Planetary Science Letters.

[2]  Seongryong Kim,et al.  Evidence of Volatile‐Induced Melting in the Northeast Asian Upper Mantle , 2021, Journal of Geophysical Research: Solid Earth.

[3]  K. Koper,et al.  FastTrip: A Fast MPI-Accelerated 1D Triplication Waveform Inversion Package for Constraining Mantle Transition Zone Discontinuities , 2021, Seismological Research Letters.

[4]  C. Thurber,et al.  Integrating Magnetotelluric and Seismic Images of Silicic Magma Systems: A Case Study From the Laguna del Maule Volcanic Field, Central Chile , 2020, Journal of Geophysical Research: Solid Earth.

[5]  N. Podhorszki,et al.  Global adjoint tomography—model GLAD-M25 , 2020 .

[6]  Xueqiu Wang,et al.  Deep origin of Cenozoic volcanoes in Northeast China revealed by 3-D electrical structure , 2020, Science China Earth Sciences.

[7]  M. Hearne,et al.  Slab2, a comprehensive subduction zone geometry model , 2018, Science.

[8]  S. Grand,et al.  Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography , 2018, Geochemistry, Geophysics, Geosystems.

[9]  B. Tauzin,et al.  Pervasive upper mantle melting beneath the western US , 2017 .

[10]  P. Shearer,et al.  A sporadic low‐velocity layer atop the 410 km discontinuity beneath the Pacific Ocean , 2017 .

[11]  David Pugmire,et al.  Global adjoint tomography: first-generation model , 2016 .

[12]  Yasuko Takei,et al.  Polycrystal anelasticity at near‐solidus temperatures , 2016 .

[13]  Xinyang Li,et al.  Effect of hydration on the elasticity of mantle minerals and its geophysical implications , 2016, Science China Earth Sciences.

[14]  Jeroen Tromp,et al.  Seismic structure of the European upper mantle based on adjoint tomography , 2015 .

[15]  J. Tromp,et al.  Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons , 2015 .

[16]  Barbara Romanowicz,et al.  Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography , 2014 .

[17]  J. Ning,et al.  Upper mantle tomography in the northwestern Pacific region using triplicated P waves , 2014 .

[18]  Yongshun John Chen,et al.  Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling , 2014 .

[19]  Xiaodong Song,et al.  Two‐dimensional/three‐dimensional waveform modeling of subducting slab and transition zone beneath Northeast Asia , 2014 .

[20]  Robert W. Clayton,et al.  Global synthetic seismograms using a 2-D finite-difference method , 2014 .

[21]  T. Nissen‐Meyer,et al.  Triplicated P-wave measurements for waveform tomography of the mantle transition zone , 2012 .

[22]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[23]  Y. Ricard,et al.  Constraining the kinetics of mantle phase changes with seismic data , 2011 .

[24]  J. Kimura,et al.  Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation , 2011 .

[25]  Yongshun John Chen,et al.  Tomographic structure of East Asia: II. Stagnant slab above 660 km discontinuity and its geodynamic implications , 2010 .

[26]  Jie Zheng,et al.  The Role Played and Opportunities Provided by IGP DMC of China National Seismic Network in Wenchuan Earthquake Disaster Relief and Researches , 2010 .

[27]  Andreas Fichtner,et al.  Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods , 2009 .

[28]  Carl Tape,et al.  Adjoint Tomography of the Southern California Crust , 2009, Science.

[29]  J. Lei,et al.  Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab , 2009 .

[30]  H. Zou,et al.  U–Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab , 2008 .

[31]  Li Li,et al.  Effect of phase transitions on compressional-wave velocities in the Earth’s mantle , 2008, Nature.

[32]  T. Tseng,et al.  Discordant contrasts of P- and S-wave speeds across the 660-km discontinuity beneath Tibet: A case for hydrous remnant of sub-continental lithosphere , 2008 .

[33]  B. Reynard,et al.  High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction , 2007, Science.

[34]  Youxue Zhang,et al.  Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China , 2007 .

[35]  Dapeng Zhao,et al.  High‐resolution mantle tomography of China and surrounding regions , 2006 .

[36]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[37]  Xi-Qiao Feng,et al.  Interface effects on effective elastic moduli of nanocrystalline materials , 2003 .

[38]  M. Brudzinski,et al.  A petrologic anomaly accompanying outboard earthquakes beneath Fiji‐Tonga: Corresponding evidence from broadband P and S waveforms , 2003 .

[39]  S. Sinogeikin,et al.  Sound velocities and elastic properties of g-Mg2SiO4 to 873 K by Brillouin spectroscopy , 2000 .

[40]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[41]  K. Koper,et al.  Multimodal function optimization with a niching genetic algorithm: A seismological example , 1999, Bulletin of the Seismological Society of America.

[42]  Rongjiang Wang,et al.  A simple orthonormalization method for stable and efficient computation of Green's functions , 1999, Bulletin of the Seismological Society of America.

[43]  S. Sinogeikin,et al.  Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite , 1998 .

[44]  Wilcock,et al.  Mantle seismic structure beneath the MELT region of the east pacific rise from P and S wave tomography , 1998, Science.

[45]  D. L. Anderson The scales of mantle convection , 1998 .

[46]  D. G. Isaak High‐temperature elasticity of iron‐bearing olivines , 1992 .

[47]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[48]  Shigenori Maruyama,et al.  Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection , 1990 .

[49]  D. Helmberger,et al.  Upper mantle P velocity structure of the Canadian Shield , 1989 .

[50]  D. Helmberger,et al.  Upper mantle shear structure of North America , 1984 .

[51]  Juan Li,et al.  Pervasive low-velocity layer atop the 410-km discontinuity beneath the northwest Pacific subduction zone: Implications for rheology and geodynamics , 2021 .

[52]  J. Ning,et al.  Constraining the 410-km discontinuity and slab structure in the Kuril subduction zone with triplication waveforms , 2021, Geophysical Journal International.

[53]  M. Wysession,et al.  An Introduction to Seismology, Earthquakes, and Earth Structure , 2002 .

[54]  D. Toomey,et al.  Intergranular basaltic melt is distributed in thin, elogated inclusions , 1994 .