Energy storage materials synthesized from ionic liquids.

The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

[1]  S. Passerini,et al.  Polymeric ionic liquid nanoparticles as binder for composite Li-ion electrodes , 2013 .

[2]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[3]  M. Armand,et al.  Novel low temperature approaches for the eco-efficient synthesis of electrode materials for secondary Li-ion batteries , 2010 .

[4]  Ya‐Xia Yin,et al.  Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. , 2012, Chemical communications.

[5]  G. R. Salazar-Banda,et al.  Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent , 2011 .

[6]  J. Tu,et al.  Electrochemical Synthesis and Characterization of Ni–P Alloy Coatings from Eutectic–Based Ionic Liquid , 2012 .

[7]  Yaroslav Filinchuk,et al.  LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries. , 2011, Angewandte Chemie.

[8]  T. Gustafsson,et al.  Direct electrodeposition of aluminium nano-rods , 2008 .

[9]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  E. Wang,et al.  Constructing Carbon Nanotube/Pt Nanoparticle Hybrids Using an Imidazolium‐Salt‐Based Ionic Liquid as a Linker , 2010, Advanced materials.

[11]  A. Balducci,et al.  Ionic liquids in supercapacitors , 2013 .

[12]  R. Ruoff,et al.  High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. , 2011, ACS nano.

[13]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[14]  G. Silva,et al.  Supercapacitors based on modified graphene electrodes with poly(ionic liquid) , 2014 .

[15]  S. Passerini,et al.  Electropolymerization of poly(3-methylthiophene) in pyrrolidinium-based ionic liquids for hybrid supercapacitors , 2008 .

[16]  Tsukasa Torimoto,et al.  New Frontiers in Materials Science Opened by Ionic Liquids , 2010, Advanced materials.

[17]  X. Mu,et al.  Top-Down Synthesis of Open Framework Fluoride for Lithium and Sodium Batteries , 2013 .

[18]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[19]  Rui Zhang,et al.  Ionothermal synthesis and characterization of Li2MnSiO4/C composites as cathode materials for lithium-ion batteries , 2014 .

[20]  Zhou Zhou,et al.  Electropolymerization of ionic liquid substituted polyphenylene as supercapacitors materials , 2009 .

[21]  Guosong Hong,et al.  Advanced zinc-air batteries based on high-performance hybrid electrocatalysts , 2013, Nature Communications.

[22]  M. Armand,et al.  Fluorosulfate Positive Electrodes for Li-Ion Batteries Made via a Solid-State Dry Process , 2010 .

[23]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[24]  Jae‐Jun Park,et al.  Synthesis of Silicon Thin Film by Electrodeposition from Ionic Liquid , 2013 .

[25]  S. Passerini,et al.  Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[26]  Jun‐Jie Zhu,et al.  Electropolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor , 2008 .

[27]  J. Tarascon,et al.  Al Current Collectors for Li-Ion Batteries Made via a Template-Free Electrodeposition Process in Ionic Liquids , 2010 .

[28]  S. Mao,et al.  Growth of nickel phosphide films as anodes for lithium-ion batteries: Based on a novel method for synthesis of nickel films using ionic liquids , 2013 .

[29]  Frank Endres,et al.  Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant. , 2009, Angewandte Chemie.

[30]  M. Seery,et al.  Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst , 2007 .

[31]  Ke-ning Sun,et al.  An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries. , 2013, ACS applied materials & interfaces.

[32]  W. Kautek,et al.  Aluminum-electrocrystallization from metal—organic electrolytes , 1989 .

[33]  Hua-ming Li,et al.  Ionic liquid assisted synthesis and photocatalytic properties of α-Fe2O3 hollow microspheres. , 2013, Dalton transactions.

[34]  T. Heinze,et al.  Interactions of Ionic Liquids with Polysaccharides -2: Cellulose , 2008 .

[35]  Xiaochuan Duan,et al.  Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. , 2009, ACS nano.

[36]  Yi Cui,et al.  Lithium‐Ion Textile Batteries with Large Areal Mass Loading , 2011 .

[37]  O. Shekhah,et al.  Ultrasound-assisted synthesis of mesoporous β-Ni(OH)2 and NiO nano-sheets using ionic liquids , 2012 .

[38]  Yong‐Sheng Hu,et al.  Porous Li4Ti5O12 Coated with N‐Doped Carbon from Ionic Liquids for Li‐Ion Batteries , 2011, Advanced materials.

[39]  M. Antonietti,et al.  A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials , 2010 .

[40]  H. Cui,et al.  Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes , 2014 .

[41]  Byeong-Su Kim,et al.  Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries , 2011 .

[42]  K. Ziegler,et al.  Die Elektrolytische Abscheidung von Aluminium aus organischen Komplexverbindungen , 1956 .

[43]  C. Feldmann,et al.  Ionic liquids: new perspectives for inorganic synthesis? , 2011, Angewandte Chemie.

[44]  Xiangdong Meng,et al.  Elektrochemische Abscheidung von dreidimensional geordnetem makroporösem Germanium aus ionischen Flüssigkeiten: eine Methode zur Herstellung von photonischen Kristallen mit hoher Dielektrizitätskonstante† , 2009 .

[45]  L. Gu,et al.  Low‐Temperature Ionic‐Liquid‐Based Synthesis of Nanostructured Iron‐Based Fluoride Cathodes for Lithium Batteries , 2010, Advanced materials.

[46]  Jeng‐Kuei Chang,et al.  Ideal pseudocapacitive performance of the Mn oxide anodized from the nanostructured and amorphous Mn thin film electrodeposited in BMP–NTf2 ionic liquid , 2008 .

[47]  Seok Kim,et al.  Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode , 2014 .

[48]  Yong‐Sheng Hu,et al.  Cereus‐Shaped Mesoporous Rutile TiO2 Formed in Ionic Liquid: Synthesis and Li‐Storage Properties , 2014 .

[49]  Po-Yu Chen,et al.  Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors , 2008 .

[50]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[51]  Kun Wang,et al.  Reactable ionic liquid assisted preparation of porous Co3O4 nanostructures with enhanced supercapacitive performance , 2014 .

[52]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .

[53]  Jun Yan,et al.  Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors , 2013 .

[54]  Qiang Zhao,et al.  Poly(ionic liquid)-derived nitrogen-doped hollow carbon spheres: synthesis and loading with Fe₂O₃ for high-performance lithium ion batteries , 2013 .

[55]  S. Kim,et al.  Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties , 2014 .

[56]  S. Jiao,et al.  Electrochemically assembling of polythiophene film in ionic liquids (ILs) microemulsions and its application in an electrochemical capacitor , 2014 .

[57]  M. Armand,et al.  Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries , 2011 .

[58]  F. Yan,et al.  Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors , 2013 .

[59]  J. Tu,et al.  One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries , 2013 .

[60]  A. Prowald,et al.  Electrochemical synthesis of PEDOT and PPP macroporous films and nanowire architectures from ionic liquids , 2012, Journal of Solid State Electrochemistry.

[61]  Dianqing Li,et al.  Size-controlled hydrothermal synthesis and high electrocatalytic performance of CoS2 nanocatalysts as non-precious metal cathode materials for fuel cells , 2013 .

[62]  S. Mho,et al.  Synergism of ionic liquid and surfactant molecules in the growth of LiFePO4 nanorods and the electrochemical performances , 2012 .

[63]  M. Antonietti,et al.  Poly(ionic liquid)s: Polymers expanding classical property profiles , 2011 .

[64]  G. Fauler,et al.  Evaluation of decomposition products of EMImCl·1.5AlCl3 during aluminium electrodeposition with different analytical methods , 2014 .

[65]  Oscar Miguel,et al.  One-step wet chemical deposition of NiO from the electrochemical reduction of nitrates in ionic liquid based electrolytes , 2013 .

[66]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[67]  R. Devan,et al.  Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid , 2011 .

[68]  Jianrong Chen,et al.  Ionic liquid crystal-assisted synthesis of PtAg nanoflowers on reduced graphene oxide and their enhanced electrocatalytic activity toward oxygen reduction reaction , 2014 .

[69]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Tailor-Made LiFePO4 Powders for Li-Ion Battery Applications , 2009 .

[70]  Yunlong Zhao,et al.  One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. , 2014, Nano letters.

[71]  A. Balducci,et al.  Natural Cellulose: A Green Alternative Binder for High Voltage Electrochemical Double Layer Capacitors Containing Ionic Liquid-Based Electrolytes , 2014 .

[72]  M. Wolff,et al.  Ionische Flüssigkeiten – neue Perspektiven für die anorganische Synthesechemie? , 2011 .

[73]  Kyoung G. Lee,et al.  Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids. , 2013, ACS nano.

[74]  Qiang Zhao,et al.  Water dispersible, highly graphitic and nitrogen-doped carbon nanobubbles. , 2013, Small.

[75]  Li Xu,et al.  Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance , 2014 .

[76]  Xueliang Li,et al.  Ionothermal synthesis and rate performance studies of nanostructured Li3V2(PO4)3/C composites as cathode materials for lithium-ion batteries , 2013, Journal of Solid State Electrochemistry.

[77]  Yunhui Huang,et al.  Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries , 2014 .

[78]  M. Antonietti,et al.  Poly(ionic liquid) Latexes Prepared by Dispersion Polymerization of Ionic Liquid Monomers , 2011 .

[79]  A. Yamada,et al.  Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting , 2012, Journal of Solid State Electrochemistry.

[80]  Mingdeng Wei,et al.  Synthesis of MoO2 nanosheets by an ionic liquid route and its electrochemical properties , 2013 .

[81]  K. Edström,et al.  Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors , 2011 .

[82]  J. Tu,et al.  A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid , 2013 .

[83]  T. Gustafsson,et al.  Electrodeposition as a Tool for 3D Microbattery Fabrication , 2011 .

[84]  L. Nazar,et al.  Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering , 2012 .

[85]  L. Gu,et al.  Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder: a case study on iron fluoride nanoparticles. , 2011, ACS nano.

[86]  Wei Guo,et al.  Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: Ionic liquid assisted synthesis and the effect of CuO coating , 2014 .

[87]  J. Tarascon,et al.  A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. , 2011, Nature materials.

[88]  Y. Li,et al.  3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties , 2013 .

[89]  S. Dai,et al.  High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries , 2012 .

[90]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[91]  M. Armand,et al.  Ionothermal Synthesis of Li-Based Fluorophosphates Electrodes † , 2010 .

[92]  F. Endres,et al.  Electrochemical synthesis of poly(p-phenylene) and poly(p-phenylene)/TiO2 nanowires in an ionic liquid , 2011 .

[93]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[94]  Ying-Jie Zhu,et al.  Iron oxide hollow spheres : Microwave-hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties , 2009 .

[95]  Jean-Marie Tarascon,et al.  Structure and electrochemical properties of novel mixed Li(Fe1−xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis , 2010 .

[96]  Martin Winter,et al.  Natural, cheap and environmentally friendly binder for supercapacitors , 2013 .

[97]  Li Xu,et al.  Preparation of 1D CuO Nanorods by Means of a Metal Ion Containing Ionic Liquid and Their Supercapacitance , 2013 .

[98]  Yong‐Sheng Hu,et al.  Ionic-liquid synthesis route of TiO(2) (B) nanoparticles for functionalized materials. , 2011, Chemistry.

[99]  J. Tarascon,et al.  Electrochemically assisted growth of LiFePO4 in ionic liquid media , 2011 .

[100]  Cengiz S. Ozkan,et al.  Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors , 2014, Scientific Reports.

[101]  Wen‐Cui Li,et al.  Ionic liquid C16mimBF4assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors , 2013 .

[102]  M. Shamsipur,et al.  Ionic Liquid Aided Chemical Synthesis of Noble Metal Nanocomposites as Efficient Nanoelectrocatalysts , 2013 .

[103]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[104]  Taihong Wang,et al.  Ionothermal synthesis of aggregated α-Fe₂O₃ nanoplates and their magnetic properties. , 2011, Nanoscale.

[105]  Yue Ma,et al.  N-doped carbon encapsulation of ultrafine silicon nanocrystallites for high performance lithium ion storage , 2013 .

[106]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[107]  M. Winter,et al.  Natural cellulose as binder for lithium battery electrodes , 2012 .