Genomic Deletions Created upon LINE-1 Retrotransposition

LINE-1 (L1) retrotransposition continues to impact the human genome, yet little is known about how L1 integrates into DNA. Here, we developed a plasmid-based rescue system and have used it to recover 37 new L1 retrotransposition events from cultured human cells. Sequencing of the insertions revealed the usual L1 structural hallmarks; however, in four instances, retrotransposition generated large target site deletions. Remarkably, three of those resulted in the formation of chimeric L1s, containing the 5' end of an endogenous L1 fused precisely to our engineered L1. Thus, our data demonstrate multiple pathways for L1 integration in cultured cells, and show that L1 is not simply an insertional mutagen, but that its retrotransposition can result in significant deletions of genomic sequence.

[1]  L. Kadouri,et al.  A deletion/insertion mutation in the BRCA2 gene in a breast cancer family: A possible role of the Alu‐polyA tail in the evolution of the deletion , 2001, Genes, chromosomes & cancer.

[2]  J. Boeke,et al.  Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. , 1998, Biochemistry.

[3]  J. V. Moran,et al.  Mammalian LINE-1 Retrotransposons and Related Elements , 2002 .

[4]  T. Hayakawa,et al.  Alu-mediated inactivation of the human CMP- N-acetylneuraminic acid hydroxylase gene , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Marie-Christine Chaboissier,et al.  Retrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3' end , 2000, Nucleic Acids Res..

[6]  S T Sherry,et al.  Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. , 2000, Genome research.

[7]  M. Batzer,et al.  Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution , 1995, Molecular and cellular biology.

[8]  Wayne N Frankel,et al.  The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. , 2002, Genomics.

[9]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[10]  S. Martin,et al.  Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells , 1991, Molecular and cellular biology.

[11]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[12]  A. Furano,et al.  Recombination creates novel L1 (LINE-1) elements in Rattus norvegicus. , 1997, Genetics.

[13]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[14]  Giovanni Parmigiani,et al.  Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo , 2002, Cell.

[15]  A. Troxel,et al.  Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. , 2001, Genome research.

[16]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[17]  A. Ballabio,et al.  LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis. , 1999, American journal of human genetics.

[18]  P. Ward,et al.  Genomic rearrangements of the APC tumor-suppressor gene in familial adenomatous polyposis , 1999, Human Genetics.

[19]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[20]  Annabel M. Patterson Reading Between the Lines , 1992 .

[21]  W S Watkins,et al.  Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. , 2001, Journal of molecular biology.

[22]  A. Tabachnik,et al.  [Escherichia coli plasmids]. , 1978, Zhurnal mikrobiologii, epidemiologii, i immunobiologii.

[23]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[24]  A. Weiner,et al.  Characterization of a Novel Class of Interspersed LTR Elements in Primate Genomes: Structure, Genomic Distribution, and Evolution , 1998, Journal of Molecular Evolution.

[25]  K. Mikoshiba,et al.  The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. , 2000, Brain research. Molecular brain research.

[26]  J. V. Moran,et al.  A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. , 2000, Analytical biochemistry.

[27]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[28]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[29]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[30]  H. Hohjoh,et al.  Sequence‐specific single‐strand RNA binding protein encoded by the human LINE‐1 retrotransposon , 1997, The EMBO journal.

[31]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[32]  S. Scherer,et al.  Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas , 1997, Nature Genetics.

[33]  E. Ostertag,et al.  Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. , 2001, Genome research.

[34]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[35]  H. Hohjoh,et al.  Cytoplasmic ribonucleoprotein complexes containing human LINE‐1 protein and RNA. , 1996, The EMBO journal.

[36]  Jack W. Szostak,et al.  The double-strand-break repair model for recombination , 1983, Cell.

[37]  H. Nojima,et al.  High efficiency transformation of Escherichia coli with plasmids. , 1990, Gene.

[38]  O. Sakatsume,et al.  The optimization of preparations of competent cells for transformation of E. coli. , 1994, Nucleic acids research.

[39]  P. Ward,et al.  Genomic rearrangements of the , 2000 .

[40]  S. Martin,et al.  Recombination between subtypes creates a mosaic lineage of LINE-1 that is expressed and actively retrotransposing in the mouse genome. , 1998, Journal of molecular biology.

[41]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[42]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[43]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[44]  T. Eickbush,et al.  RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element , 1995, Molecular and cellular biology.