Trichotomies in the Complexity of Minimal Inference

We study the complexity of the propositional minimal inference problem. Its complexity has been extensively studied before because of its fundamental importance in artificial intelligence and nonmonotonic logics. We prove that the complexity of the minimal inference problem with unbounded queries has a trichotomy (between P, coNP-complete, and Pi_2^P-complete). This result finally settles with a positive answer the trichotomy conjecture of Kirousis and Kolaitis[A dichotomy in the complexity of propositional circumscription, LICS'01] in the unbounded case. We also present simple and efficiently computable criteria separating the different cases.

[1]  Phokion G. Kolaitis,et al.  A Dichotomy in the Complexity of Propositional Circumscription , 2001, Theory of Computing Systems.

[2]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[3]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[4]  B. A. Romov The algebras of partial functions and their invariants , 1981 .

[5]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[6]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[7]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[8]  Henning Schnoor,et al.  Partial Polymorphisms and Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[9]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[10]  Zhi-Zhong Chen,et al.  The complexity of selecting maximal solutions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[11]  Phokion G. Kolaitis,et al.  On the Complexity of Model Checking and Inference in Minimal Models , 2001, LPNMR.

[12]  Heribert Vollmer,et al.  Bases for Boolean co-clones , 2005, Inf. Process. Lett..

[13]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[14]  Phokion G. Kolaitis,et al.  The complexity of minimal satisfiability problems , 2003, Inf. Comput..

[15]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[16]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[17]  Nicholas Pippenger,et al.  Theories of computability , 1997 .

[18]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[19]  Gustav Nordh,et al.  Frozen Boolean Partial Co-clones , 2009, 2009 39th International Symposium on Multiple-Valued Logic.

[20]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[21]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[22]  Arnaud Durand,et al.  The Inference Problem for Propositional Circumscription of Affine Formulas Is coNP-Complete , 2003, STACS.

[23]  Marco Cadoli,et al.  The Complexity of Model Checking for Circumscriptive Formulae , 1992, Inf. Process. Lett..

[24]  Vladimir Gurvich,et al.  On the Complexity of Some Enumeration Problems for Matroids , 2005, SIAM J. Discret. Math..

[25]  Gustav Nordh,et al.  An algebraic approach to the complexity of propositional circumscription , 2004, LICS 2004.

[26]  Heribert Vollmer,et al.  Complexity of non-monotonic logics , 2010, Bull. EATCS.

[27]  Michael Thomas The Complexity of Circumscriptive Inference in Post's Lattice , 2009, LPNMR.

[28]  Raymond Reiter,et al.  Characterizing Diagnoses and Systems , 1992, Artif. Intell..

[29]  Georg Gottlob,et al.  Propositional Circumscription and Extended Closed-World Reasoning are IIp2-Complete , 1993, Theor. Comput. Sci..

[30]  Gustav Nordh,et al.  A Trichotomy in the Complexity of Propositional Circumscription , 2005, LPAR.

[31]  Maurizio Lenzerini,et al.  The Complexity of Propositional Closed World Reasoning and Circumscription , 1994, J. Comput. Syst. Sci..

[32]  Teodor C. Przymusinski,et al.  On the Relationship Between Circumscription and Negation as Failure , 1989, Artif. Intell..

[33]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.