An efficient calculation of computed torque control of flexible manipulators

In this paper, we propose an efficient recursive computation of the nonlinear computed torque law of flexible manipulators. The algorithm is based on the generalized Newton-Euler model of flexible manipulators and can be considered as a generalization of the computed torque control algorithm of rigid robots proposed by Luh-Walker-Paul (1980). It is programmed using Mathematica to get automatically an efficient customized symbolic model with reduced number of operations.

[1]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[2]  Yannick Aoustin,et al.  Nonlinear control laws for a 2 flexible link robot: comparison of applicability domains , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[3]  W. Book Recursive Lagrangian Dynamics of Flexible Manipulator Arms , 1984 .

[4]  G. B. Sincarsin,et al.  Dynamics of an elastic multibody chain: Part B—Global dynamics , 1989 .

[5]  H. Van Brussel,et al.  Control of Flexible Robots Using Generalized Nonlinear Decoupling , 1988 .

[6]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[7]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[8]  Frédéric Boyer Contribution a la modelisation et a la commande dynamique des robots flexibles , 1994 .

[9]  Frédéric Boyer,et al.  Symbolic modeling of a flexible manipulator via assembling of its generalized Newton Euler model , 1996 .

[10]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[11]  P. Chedmail,et al.  Nonlinear Decoupling Control Control of Flexible Robots , 1989 .

[12]  R. Singh,et al.  Dynamics of flexible bodies in tree topology - A computer oriented approach , 1985 .

[13]  Sahjendra N. Singh,et al.  Control of Elastic Robotic Systems by Nonlinear Inversion and Modal Damping , 1986 .

[14]  Inna Sharf,et al.  Simulation of flexible-link manipulators: basis functions and nonlinear terms in the motion equations , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[15]  Bruno Siciliano,et al.  Joint-Based Control of a Nonlinear Model of a Flexible Arm , 1988, 1988 American Control Conference.