Laser ablation : principles and applications

1. History, Scope, and the Future of Laser Ablation.- 1.1 Introduction.- 1.2 History of Laser Ablation Studies and Applications.- 1.2.1 The Sixties.- 1.2.2 The Seventies.- 1.2.3 The Eighties.- 1.2.4 The Nineties.- References.- 2. Electronic Processes in Laser Ablation of Semiconductors and Insulators.- 2.1 Electronic Mechanisms in Desorption and Ablation.- 2.2 Interaction of Photons with Solids.- 2.2.1 Creation of Electron-Hole Pairs and Excitons.- 2.2.2 Excitation of Electrons and Holes Localized on Defects.- 2.2.3 Collective Effects: Free-Electron Heating and Plasma Effects.- 2.2.4 Density of Electronic Excitation.- 2.3 Electron-Lattice Interactions and the Localized Excited State.- 2.3.1 Interactions Between Free Carriers and Phonons.- 2.3.2 Capture of Charge Carriers at Defect Sites.- 2.3.3 Lattice-Induced Localization of Free Carriers and Excitons.- 2.4 Creation and De-Excitation of the Localized Excited State.- 2.4.1 Non-Radiative De-Excitation.- 2.4.2 Transfer of Electronic to Configurational Energy.- 2.4.3 Other Non-Radiative De-Excitation Channels.- 2.5 Survey of Experimental Results.- 2.5.1 Alkali Halides and Alkaline-Earth Fluorides.- 2.5.2 Oxides.- 2.5.3 Compound Semiconductors.- 2.6 Models of Laser-Induced Desorption.- 2.6.1 Models of Electronic Processes in Laser-Induced Desorption.- 2.6.2 Calculation Techniques.- 2.7 Simulation of Laser Ablation.- 2.7.1 Models of Laser Ablation.- 2.7.2 Model Calculations of Laser Ablation.- 2.8 Summary and Conclusions.- References.- 3. Laser Ablation and Optical Surface Damage.- 3.1 Introductory Remarks.- 3.2 Characteristics of Optical Surface Damage.- 3.3 Possible Causes of Optical Damage.- 3.4 Investigation of Optical Surface Damage Mechanisms.- 3.4.1 Laser Ablation as a Probe of Optical Damage.- 3.4.2 Surface Analytical Techniques.- 3.4.3 Laser Pump-Probe Measurements.- 3.5 Concluding Remarks.- References.- 4. Pulsed-Laser Deposition of High-Temperature Superconducting Thin Films.- 4.1 Advantages of Pulsed-Laser Deposition.- 4.2 Materials Base.- 4.3 Laser-Beam-Target Interaction.- 4.3.1 Target Texturing.- 4.3.2 Particle Deposition.- 4.4 Dynamics of the Laser-Produced Plume.- 4.5 Evaporant-Substrate Interaction.- 4.6 Frontiers of High-Temperature Superconducting Thin-Film Research.- 4.6.1 Epitaxial Multilayers.- 4.6.2 Work on Ultrathin Films.- 4.6.3 Control of Phase and Crystallinity in Thin-Film Form.- 4.7 Scaling-up to Larger Areas.- 4.8 Future Directions.- 4.8.1 Component Development.- 4.8.2 System Issues.- 4.9 Summary.- References.- 5. Interaction of Laser Radiation with Organic Polymers.- 5.1 History.- 5.2 Characteristics of UV-Laser Ablation.- 5.3 Chemical Physics of the Ablation Process.- 5.3.1 Ablation Products.- 5.3.2 Time Profile of Ablation.- a) Polyimide.- b) Polymethyl Methacrylate.- 5.4 Theories of Ultraviolet-Laser Ablation.- 5.5 Contemporary Trends in UV-Laser Ablation.- References.- 6. Laser Ablation and Laser Desorption Techniques with Fourier-Transform Mass Spectrometry (FTMS).- 6.1 Principles of FTMS Operation.- 6.1.1 Ion Formation.- 6.1.2 Ion Trapping.- 6.1.3 Ion Detection.- 6.1.4 Ion Structural Techniques.- 6.2 Laser-Ablation FTMS for Clusters.- 6.2.1 Cluster Formation.- 6.2.2 Accurate Mass and High-Resolution Measurements.- 6.2.3 Ion-Molecule Reactions.- 6.2.4 Collision-Activated Dissociation.- 6.3 Laser-Desorption FTMS for Biomolecules.- 6.3.1 Development of Matrix-Assisted Laser Desorption.- 6.3.2 Interfacing MALDI with FTMS.- 6.3.3 Ion-Trapping Considerations for MALDI-FTMS.- 6.3.4 Combining Separation Methods with MALDI-FTMS.- 6.4 Future Directions.- 6.5 Conclusions.- References.- 7. Diagnostic Studies of Laser Ablation for Chemical Analysis.- 7.1 Laser Ablation in Vacuum.- 7.1.1 Instrumentation.- 7.1.2 Physical Processes for Laser Ablation In Vacuo.- 7.1.3 Examples.- 7.2 Laser Ablation in an Atmosphere.- 7.2.1 Physical Processes Unique to Ablation in an Atmosphere.- 7.2.2 Diagnostics for Laser Ablation in an Atmosphere.- a) Blast-Wave Diagnostics.- b) Optical Diagnostics for Monitoring Plasma Formation.- c) Density, Temperature, and Velocity Diagnostics.- d) Ablated Material Velocity Determination.- References.