Deep Learning for Anomaly Detection: A Review

Anomaly detection, a.k.a. outlier detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep anomaly detection, has emerged as a critical direction. This paper reviews the research of deep anomaly detection with a comprehensive taxonomy of detection methods, covering advancements in three high-level categories and 11 fine-grained categories of the methods. We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges. We further discuss a set of possible future opportunities and new perspectives on addressing the challenges.

[1]  Gustavo Carneiro,et al.  Few-Shot Anomaly Detection for Polyp Frames from Colonoscopy , 2020, MICCAI.

[2]  Carla E. Brodley,et al.  FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection , 2012, Data Mining and Knowledge Discovery.

[3]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[4]  Yusha Liu,et al.  Classifier Two Sample Test for Video Anomaly Detections , 2018, BMVC.

[5]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[6]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[7]  Nicu Sebe,et al.  Learning Deep Representations of Appearance and Motion for Anomalous Event Detection , 2015, BMVC.

[8]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[9]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[10]  Ling Chen,et al.  Sparse Modeling-Based Sequential Ensemble Learning for Effective Outlier Detection in High-Dimensional Numeric Data , 2018, AAAI.

[11]  Brendan J. Frey,et al.  k-Sparse Autoencoders , 2013, ICLR.

[12]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[13]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[14]  Thomas G. Dietterich,et al.  Systematic construction of anomaly detection benchmarks from real data , 2013, ODD '13.

[15]  Yong Liu,et al.  AnomalyNet: An Anomaly Detection Network for Video Surveillance , 2019, IEEE Transactions on Information Forensics and Security.

[16]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[17]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Christian S. Jensen,et al.  Outlier Detection for Time Series with Recurrent Autoencoder Ensembles , 2019, IJCAI.

[19]  Sanjay Chawla,et al.  Anomaly Detection using One-Class Neural Networks , 2018, ArXiv.

[20]  Karsten M. Borgwardt,et al.  Rapid Distance-Based Outlier Detection via Sampling , 2013, NIPS.

[21]  David Pfau,et al.  Unrolled Generative Adversarial Networks , 2016, ICLR.

[22]  Thorsten Joachims,et al.  Unbiased Learning-to-Rank with Biased Feedback , 2016, WSDM.

[23]  Charu C. Aggarwal,et al.  Outlier Detection with Autoencoder Ensembles , 2017, SDM.

[24]  Lorenzo Rosasco,et al.  Are Loss Functions All the Same? , 2004, Neural Computation.

[25]  Sridhar Ramaswamy,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.

[26]  James Bailey,et al.  Mining outlying aspects on numeric data , 2015, Data Mining and Knowledge Discovery.

[27]  Murray Shanahan,et al.  Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders , 2016, ArXiv.

[28]  Clara Pizzuti,et al.  Fast Outlier Detection in High Dimensional Spaces , 2002, PKDD.

[29]  Peter Kaiser,et al.  Predicting Positive p53 Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learning , 2009, PLoS Comput. Biol..

[30]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[31]  Christopher Leckie,et al.  High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning , 2016, Pattern Recognit..

[32]  Rajeev Rastogi,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD 2000.

[33]  Calton Pu,et al.  Introducing the Webb Spam Corpus: Using Email Spam to Identify Web Spam Automatically , 2006, CEAS.

[34]  Ling Chen,et al.  Unsupervised Feature Selection for Outlier Detection by Modelling Hierarchical Value-Feature Couplings , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[35]  Joost van de Weijer,et al.  Leveraging Unlabeled Data for Crowd Counting by Learning to Rank , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  V. S. Subrahmanian,et al.  VEWS: A Wikipedia Vandal Early Warning System , 2015, KDD.

[37]  James Bailey,et al.  Discovering outlying aspects in large datasets , 2016, Data Mining and Knowledge Discovery.

[38]  Luis Muñoz-González,et al.  Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection , 2018, ArXiv.

[39]  Kibok Lee,et al.  Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples , 2017, ICLR.

[40]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[41]  Yifan Guo,et al.  A Unified Unsupervised Gaussian Mixture Variational Autoencoder for High Dimensional Outlier Detection , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[42]  Wei Cao,et al.  Financial Crisis Forecasting via Coupled Market State Analysis , 2015, IEEE Intelligent Systems.

[43]  Chuan Sheng Foo,et al.  Adversarially Learned Anomaly Detection , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[44]  Hans-Peter Kriegel,et al.  DBSCAN Revisited, Revisited , 2017, ACM Trans. Database Syst..

[45]  Ran El-Yaniv,et al.  Deep Anomaly Detection Using Geometric Transformations , 2018, NeurIPS.

[47]  Tomás Pevný,et al.  Loda: Lightweight on-line detector of anomalies , 2016, Machine Learning.

[48]  Juan Carlos Niebles,et al.  Learning to Decompose and Disentangle Representations for Video Prediction , 2018, NeurIPS.

[49]  Shenghua Gao,et al.  Remembering history with convolutional LSTM for anomaly detection , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[50]  Shian-Shyong Tseng,et al.  Two-phase clustering process for outliers detection , 2001, Pattern Recognit. Lett..

[51]  Charu C. Aggarwal,et al.  NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks , 2018, KDD.

[52]  M. M. Moya,et al.  One-class classifier networks for target recognition applications , 1993 .

[53]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[54]  Huidong Jin,et al.  Deep Weakly-supervised Anomaly Detection , 2019 .

[55]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[56]  Anton van den Hengel,et al.  Deep Anomaly Detection with Deviation Networks , 2019, KDD.

[57]  Chunhua Shen,et al.  Unsupervised Representation Learning by Predicting Random Distances , 2019, IJCAI.

[58]  Ling Chen,et al.  Learning Homophily Couplings from Non-IID Data for Joint Feature Selection and Noise-Resilient Outlier Detection , 2017, IJCAI.

[59]  Ling Shao,et al.  Object-Centric Auto-Encoders and Dummy Anomalies for Abnormal Event Detection in Video , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[61]  Minh-Nghia Nguyen,et al.  Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features , 2018, ECML/PKDD.

[62]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[63]  Amos J. Storkey,et al.  Exploration by Random Network Distillation , 2018, ICLR.

[64]  Volker Roth,et al.  Outlier Detection with One-class Kernel Fisher Discriminants , 2004, NIPS.

[65]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[66]  Mahmood Fathy,et al.  Adversarially Learned One-Class Classifier for Novelty Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[67]  Andrew Y. Ng,et al.  Pharmacokinetics of a novel formulation of ivermectin after administration to goats , 2000, ICML.

[68]  Terje Aven,et al.  Risk assessment and risk management: Review of recent advances on their foundation , 2016, Eur. J. Oper. Res..

[69]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[70]  Raghavendra Chalapathy University of Sydney,et al.  Deep Learning for Anomaly Detection: A Survey , 2019, ArXiv.

[71]  Yu Cheng,et al.  Unsupervised Sequential Outlier Detection With Deep Architectures , 2017, IEEE Transactions on Image Processing.

[72]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[73]  Tom White,et al.  Generative Adversarial Networks: An Overview , 2017, IEEE Signal Processing Magazine.

[74]  Jasper Snoek,et al.  Likelihood Ratios for Out-of-Distribution Detection , 2019, NeurIPS.

[75]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[76]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[77]  Luigi Palopoli,et al.  Outlying property detection with numerical attributes , 2013, Data Mining and Knowledge Discovery.

[78]  Fan Yang,et al.  Good Semi-supervised Learning That Requires a Bad GAN , 2017, NIPS.

[79]  Kai Ming Ting,et al.  LeSiNN: Detecting Anomalies by Identifying Least Similar Nearest Neighbours , 2015, 2015 IEEE International Conference on Data Mining Workshop (ICDMW).

[80]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[81]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[82]  Klemens Böhm,et al.  HiCS: High Contrast Subspaces for Density-Based Outlier Ranking , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[83]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[84]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[85]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[86]  Cesare Alippi,et al.  Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[87]  Lawrence K. Saul,et al.  Identifying suspicious URLs: an application of large-scale online learning , 2009, ICML '09.

[88]  Raymond T. Ng,et al.  Finding Intensional Knowledge of Distance-Based Outliers , 1999, VLDB.

[89]  Marc Najork,et al.  Position Bias Estimation for Unbiased Learning to Rank in Personal Search , 2018, WSDM.

[90]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[91]  Charu C. Aggarwal,et al.  Outlier Analysis , 2013, Springer New York.

[92]  Yike Guo,et al.  Deep Sequence Learning with Auxiliary Information for Traffic Prediction , 2018, KDD.

[93]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[94]  Nour Moustafa,et al.  UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) , 2015, 2015 Military Communications and Information Systems Conference (MilCIS).

[95]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[96]  Seung-Ik Lee,et al.  Old Is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[97]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[98]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[99]  Meng Wang,et al.  Generative Adversarial Active Learning for Unsupervised Outlier Detection , 2018, IEEE Transactions on Knowledge and Data Engineering.

[100]  Nuno Vasconcelos,et al.  Anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[101]  Wei Liu,et al.  Deep Spectral Clustering Using Dual Autoencoder Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Philip S. Yu,et al.  Domain Driven Data Mining , 2015 .

[103]  Feifei Li,et al.  DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning , 2017, CCS.

[104]  Daan Wierstra,et al.  Deep AutoRegressive Networks , 2013, ICML.

[105]  Cheng Deng,et al.  Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[106]  Cewu Lu,et al.  Abnormal Event Detection at 150 FPS in MATLAB , 2013, 2013 IEEE International Conference on Computer Vision.

[107]  Ling Huang,et al.  Online System Problem Detection by Mining Patterns of Console Logs , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[108]  Toby P. Breckon,et al.  GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training , 2018, ACCV.

[109]  Hongxing He,et al.  Outlier Detection Using Replicator Neural Networks , 2002, DaWaK.

[110]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[111]  Simone Calderara,et al.  Latent Space Autoregression for Novelty Detection , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Thomas G. Dietterich,et al.  Sequential Feature Explanations for Anomaly Detection , 2019, ACM Trans. Knowl. Discov. Data.

[113]  Zengyou He,et al.  Discovering cluster-based local outliers , 2003, Pattern Recognit. Lett..

[114]  Yann LeCun,et al.  Deep multi-scale video prediction beyond mean square error , 2015, ICLR.

[115]  Vipin Kumar,et al.  Feature bagging for outlier detection , 2005, KDD '05.

[116]  Arthur Zimek,et al.  On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study , 2016, Data Mining and Knowledge Discovery.

[117]  Mubarak Shah,et al.  Real-World Anomaly Detection in Surveillance Videos , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[118]  Sanjay Chawla,et al.  Deep Learning for Anomaly Detection: A Survey , 2019, ArXiv.

[119]  Luigi Palopoli,et al.  Detecting outlying properties of exceptional objects , 2009, TODS.

[120]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[121]  Chuan Sheng Foo,et al.  Efficient GAN-Based Anomaly Detection , 2018, ArXiv.

[122]  Roberto Javier López-Sastre,et al.  Deep Anomaly Detection for Generalized Face Anti-Spoofing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[123]  Lovekesh Vig,et al.  LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection , 2016, ArXiv.

[124]  Hui Wang,et al.  A clustering-based method for unsupervised intrusion detections , 2006, Pattern Recognit. Lett..

[125]  Enhong Chen,et al.  Learning Deep Representations for Graph Clustering , 2014, AAAI.

[126]  Ling Chen,et al.  Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection , 2018, KDD.

[127]  Philip S. Yu,et al.  Cross-feature analysis for detecting ad-hoc routing anomalies , 2003, 23rd International Conference on Distributed Computing Systems, 2003. Proceedings..

[128]  Fei Tony Liu,et al.  Isolation-Based Anomaly Detection , 2012, TKDD.

[129]  Alexei A. Efros,et al.  Large-Scale Study of Curiosity-Driven Learning , 2018, ICLR.

[130]  Hwee Kuan Lee,et al.  Fence GAN: Towards Better Anomaly Detection , 2019, 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI).

[131]  Lewis D. Griffin,et al.  Transfer representation-learning for anomaly detection , 2016, ICML 2016.

[132]  Guansong Pang Non-IID outlier detection with coupled outlier factors , 2019 .

[133]  Dit-Yan Yeung,et al.  Towards Bayesian Deep Learning: A Framework and Some Existing Methods , 2016, IEEE Transactions on Knowledge and Data Engineering.

[134]  Alexander Binder,et al.  Deep Semi-Supervised Anomaly Detection , 2019, ICLR.

[135]  Dhruv Batra,et al.  Joint Unsupervised Learning of Deep Representations and Image Clusters , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[136]  VincentPascal,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010 .

[137]  Min-hwan Oh,et al.  Sequential Anomaly Detection using Inverse Reinforcement Learning , 2019, KDD.

[138]  Longbing Cao,et al.  Deep Reinforcement Learning for Unknown Anomaly Detection , 2020, ArXiv.

[139]  Chuan Shi,et al.  Abnormal Event Detection via Heterogeneous Information Network Embedding , 2018, CIKM.

[140]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[141]  Jun Li,et al.  One-Class Adversarial Nets for Fraud Detection , 2018, AAAI.

[142]  Shenghua Gao,et al.  Future Frame Prediction for Anomaly Detection - A New Baseline , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[143]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[144]  Jennifer G. Dy,et al.  GPU-Accelerated Feature Selection for Outlier Detection Using the Local Kernel Density Ratio , 2012, 2012 IEEE 12th International Conference on Data Mining.

[145]  Georg Langs,et al.  f‐AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks , 2019, Medical Image Anal..

[146]  Jonghyun Choi,et al.  Learning Temporal Regularity in Video Sequences , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[147]  Jianping Yin,et al.  Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network , 2019, NeurIPS.

[148]  Daniel Cremers,et al.  Clustering with Deep Learning: Taxonomy and New Methods , 2018, ArXiv.

[149]  Lucas Theis,et al.  Lossy Image Compression with Compressive Autoencoders , 2017, ICLR.

[150]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[151]  Huan Liu,et al.  Deep Anomaly Detection on Attributed Networks , 2019, SDM.

[152]  Xia Hu,et al.  Techniques for interpretable machine learning , 2018, Commun. ACM.

[153]  Erik Marchi,et al.  Non-linear prediction with LSTM recurrent neural networks for acoustic novelty detection , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[154]  Muhammad Awais,et al.  Spoofing Attack Detection by Anomaly Detection , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[155]  Hans-Peter Kriegel,et al.  Interpreting and Unifying Outlier Scores , 2011, SDM.

[156]  Carl Doersch,et al.  Tutorial on Variational Autoencoders , 2016, ArXiv.

[157]  Radu Tudor Ionescu,et al.  Unmasking the Abnormal Events in Video , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[158]  Duen Horng Chau,et al.  Guilt by association: large scale malware detection by mining file-relation graphs , 2014, KDD.

[159]  Alexei A. Efros,et al.  Curiosity-Driven Exploration by Self-Supervised Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[160]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[161]  Yu Qiao,et al.  AnoPCN: Video Anomaly Detection via Deep Predictive Coding Network , 2019, ACM Multimedia.

[162]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[163]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[164]  Chunhua Shen,et al.  Self-Trained Deep Ordinal Regression for End-to-End Video Anomaly Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[165]  Jing Liu,et al.  A Deep One-Class Neural Network for Anomalous Event Detection in Complex Scenes , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[166]  Ke Zhang,et al.  A New Local Distance-Based Outlier Detection Approach for Scattered Real-World Data , 2009, PAKDD.

[167]  Lionel M. Ni,et al.  Generalizing from a Few Examples , 2020, ACM Comput. Surv..

[168]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[169]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[170]  Lior Rokach,et al.  Ensemble of Feature Chains for Anomaly Detection , 2013, MCS.

[171]  Nuno Vasconcelos,et al.  Anomaly Detection and Localization in Crowded Scenes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[172]  Aapo Hyvärinen,et al.  Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.

[173]  Ramesh Nallapati,et al.  OCGAN: One-Class Novelty Detection Using GANs With Constrained Latent Representations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[174]  Junbin Gao,et al.  Gaussian Processes Autoencoder for Dimensionality Reduction , 2014, PAKDD.

[175]  Longbing Cao,et al.  Coupling learning of complex interactions , 2015, Inf. Process. Manag..

[176]  Yizhou Sun,et al.  Entity Embedding-Based Anomaly Detection for Heterogeneous Categorical Events , 2016, IJCAI.

[177]  Patrick D. McDaniel,et al.  On the (Statistical) Detection of Adversarial Examples , 2017, ArXiv.

[178]  Kenneth Ward Church,et al.  Very sparse random projections , 2006, KDD '06.

[179]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[180]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[181]  Carsten Steger,et al.  MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[182]  Bo Zong,et al.  A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data , 2018, AAAI.