Feature Space Trajectory Methods for Active Computer Vision

We advance new active object recognition algorithms that classify rigid objects and estimate their pose from intensity images. Our algorithms automatically detect if the class or pose of an object is ambiguous in a given image, reposition the sensor as needed, and incorporate data from multiple object views in determining the final object class and pose estimate. A probabilistic feature space trajectory (FST) in a global eigenspace is used to represent 3D distorted views of an object and to estimate the class and pose of an input object. Confidence measures for the class and pose estimates, derived using the probabilistic FST object representation, determine when additional observations are required as well as where the sensor should be positioned to provide the most useful information. We demonstrate the ability to use FSTs constructed from images rendered from computer-aided design models to recognize real objects in real images and present test results for a set of metal machined parts.

[1]  Frank P. Ferrie,et al.  Viewpoint selection by navigation through entropy maps , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[3]  Hiroshi Murase,et al.  Detection of 3D objects in cluttered scenes using hierarchical eigenspace , 1997, Pattern Recognit. Lett..

[4]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Andrew E. Johnson,et al.  Efficient multiple model recognition in cluttered 3-D scenes , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[6]  C. W. Therrien,et al.  Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics , 1989 .

[7]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[9]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[10]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[11]  Rajesh Shenoy,et al.  Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar , 1997 .

[12]  David Casasent,et al.  FST-based active object recognition for automated assembly , 1999, Optics East.

[13]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[14]  Carme Torras,et al.  Vision-based robot positioning using neural networks , 1996, Image Vis. Comput..

[15]  David Casasent,et al.  Active object recognition using appearance-based representations derived from solid geometric models , 1998, Other Conferences.

[16]  K NayarShree,et al.  Visual learning and recognition of 3-D objects from appearance , 1995 .

[17]  Sven J. Dickinson,et al.  Active Object Recognition Integrating Attention and Viewpoint Control , 1997, Comput. Vis. Image Underst..

[18]  Frank P. Ferrie,et al.  Active recognition: using uncertainty to reduce ambiguity , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[19]  George G. Lendaris,et al.  Diffraction-pattern sampling for automatic pattern recognition , 1970 .

[20]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[21]  David Casasent,et al.  Feature space trajectory distorted object representation for classification and pose estimation , 1998 .

[22]  Hiroshi Murase,et al.  Illumination Planning for Object Recognition Using Parametric Eigenspaces , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[25]  David P. Casasent,et al.  Classifier and shift-invariant automatic target recognition neural networks , 1995, Neural Networks.

[26]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[27]  Trevor Darrell,et al.  Active face tracking and pose estimation in an interactive room , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.