Photocatalytic activity of CaTaO2N nanocrystals obtained from a hydrothermally synthesized oxide precursor

[1]  K. Domen,et al.  Enhancement of Photocatalytic Water Oxidation by the Morphological Control of LaTiO2N and Cobalt Oxide Catalysts , 2014 .

[2]  K. Domen,et al.  Enhancing photocatalytic activity of LaTiO2N by removal of surface reconstruction layer. , 2014, Nano letters.

[3]  K. Domen,et al.  Oxidation of water under visible-light irradiation over modified BaTaO2N photocatalysts promoted by tungsten species. , 2013, Angewandte Chemie.

[4]  K. Domen,et al.  Solar-Driven Z-scheme Water Splitting Using Modified BaZrO3–BaTaO2N Solid Solutions as Photocatalysts , 2013 .

[5]  W. Schnick,et al.  Unexpected luminescence properties of Sr(0.25)Ba(0.75)Si2O2N2:Eu(2+)--a narrow blue emitting oxonitridosilicate with cation ordering. , 2012, Chemistry.

[6]  S. Kikkawa,et al.  Sintering and dielectric properties of perovskite SrTaO2N ceramics , 2012 .

[7]  Dong Wook Kim,et al.  Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution , 2012, Reaction Kinetics, Mechanisms and Catalysis.

[8]  K. Domen,et al.  Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. , 2012, Journal of the American Chemical Society.

[9]  Kazunari Domen,et al.  Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. , 2012, Journal of the American Chemical Society.

[10]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[11]  Jianxin Fang,et al.  Biphenyl-based diaminophosphine oxides as air-stable preligands for the nickel-catalyzed Kumada-Tamao-Corriu coupling of deactivated aryl chlorides, fluorides, and tosylates. , 2012, Chemistry.

[12]  K. Domen,et al.  Activation of BaTaO2N photocatalyst for enhanced non-sacrificial hydrogen evolution from water under visible light by forming a solid solution with BaZrO3. , 2011, Chemistry.

[13]  L. G. Gomathi Devi,et al.  TiO2- and BaTiO3-assisted photocatalytic degradation of selected chloroorganic compounds in aqueous medium: correlation of reactivity/orientation effects of substituent groups of the pollutant molecule on the degradation rate. , 2011, The journal of physical chemistry. A.

[14]  R. Palgrave,et al.  Visible Light Photo-oxidation of Model Pollutants Using CaCu3Ti4O12: An Experimental and Theoretical Study of Optical Properties, Electronic Structure, and Selectivity , 2010, Journal of the American Chemical Society.

[15]  R. Dronskowski,et al.  Perovskite-related oxynitrides – Recent developments in synthesis, characterisation and investigations of physical properties , 2009 .

[16]  A. Weidenkaff,et al.  Microstructure, surface composition and chemical stability of partly ordered LaTiO2N , 2009 .

[17]  M. Nowak,et al.  Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. , 2009, The Review of scientific instruments.

[18]  Y. Wang,et al.  Visible-light-Induced photocatalytic oxidation of polycyclic aromatic hydrocarbons over tantalum oxynitride photocatalysts. , 2009, Environmental science & technology.

[19]  Yanjing Li,et al.  Catalytic activity of mesoporous TiO2−xNx photocatalysts for the decomposition of methyl orange under solar simulated light , 2009 .

[20]  Hongjian Yan,et al.  Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation , 2008 .

[21]  A. Weidenkaff,et al.  Photocatalytic decomposition of acetone using LaTi(O,N)3 nanoparticles under visible light irradiation , 2008 .

[22]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[23]  S. Ikeda,et al.  Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting , 2006 .

[24]  J. Jang,et al.  Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: effects of catalyst structure. , 2005, Physical chemistry chemical physics : PCCP.

[25]  C. Tai,et al.  Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb) , 2004 .

[26]  Tsuyoshi Takata,et al.  Photoreactions on LaTiO2N under Visible Light Irradiation , 2002 .

[27]  M. Jansen,et al.  Inorganic Yellow‐Red Pigments Without Toxic Metals. , 2000 .

[28]  M. Rosseinsky,et al.  Structure of Zr2ON2 by Neutron Powder Diffraction: The Absence of Nitride–Oxide Ordering , 1999 .

[29]  T. Kutty,et al.  Nanoparticles of SrTiO3 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol , 1996 .

[30]  W. White,et al.  The optical absorption edge of rare earth sesquisulfides and alkaline earth - rare earth sulfides , 1983 .

[31]  R. López,et al.  Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study , 2011, Journal of Sol-Gel Science and Technology.

[32]  Pinliang Ying,et al.  The Synergistic Effects of Two Co-catalysts on Zn2GeO4 on Photocatalytic Water Splitting , 2010 .

[33]  A. Weidenkaff,et al.  The vast colour spectrum of ternary metal oxynitride pigments , 2008 .

[34]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[35]  Y. Laurent,et al.  Préparation et caractérisation de nouveaux oxynitrures à structure perovskite , 1986 .