Smoothly bounded domains covering finite volume manifolds

In this paper we prove: if a bounded domain with $C^2$ boundary covers a manifold which has finite volume with respect to either the Bergman volume, the K\"ahler-Einstein volume, or the Kobayashi-Eisenman volume, then the domain is biholomorphic to the unit ball. This answers an old question of Yau. Further, when the domain is convex we can assume that the boundary only has $C^{1,\epsilon}$ regularity.

[1]  Jean-Pierre Rosay Sur une caractérisation de la boule parmi les domaines de ${\mathbb {C}}^n$ par son groupe d’automorphismes , 1979 .

[2]  H. Grosser Chicago , 1906 .

[3]  P. Griffiths Complex-Analytic Properties of Certain Zariski Open Sets on Algebraic Varieties , 1971 .

[4]  Ian D. Graham Distortion theorems for holomorphic maps between convex domains in n , 1990 .

[5]  Andrew M. Zimmer The automorphism group and limit set of a bounded domain II: the convex case , 2017, Journal of the London Mathematical Society.

[6]  Sai-Kee Yeung Geometry of domains with the uniform squeezing property , 2009, 0906.4647.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  G. Herbort The Bergman metric on hyperconvex domains , 1999 .

[9]  N. Mok,et al.  Rigidity of convex realizations of irreducible bounded symmetric domains of rank 2. , 1992 .

[10]  A. Karlsson On the dynamics of isometries , 2005, math/0512638.

[11]  T. Ohsawa A remark on the completeness of the Bergman metric , 1981 .

[12]  Kang-Tae Kim,et al.  Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains. , 1996 .

[13]  Canonical Metrics on the Moduli Space of Riemann Surfaces II , 2004, math/0403068.

[14]  L. Bers Spaces of Riemann surfaces as bounded domains , 2011 .

[15]  F. Forstnerič,et al.  Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings , 1987 .

[16]  Shing-Tung Yau,et al.  On the existence of a complete Kähler metric on non‐compact complex manifolds and the regularity of fefferman's equation , 1980 .

[17]  Andrew M. Zimmer Characterizing domains by the limit set of their automorphism group , 2015, 1506.07852.

[18]  B. M. Fulk MATH , 1992 .

[19]  N. Nikolov,et al.  Boundary behavior of the squeezing functions of $\mathbb C$-convex domains and plane domains , 2016, 1609.02051.

[20]  Kang-Tae Kim,et al.  On the uniform squeezing property of bounded convex domains in ℂn , 2016 .

[21]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[22]  B. Wong Characterization of the unit ball in ℂn by its automorphism group , 1977 .