The Multishift QR Algorithm. Part II: Aggressive Early Deflation
暂无分享,去创建一个
[1] R. Byers,et al. Detecting Nearly Uncontrollable Pairs , 1990 .
[2] J. H. Wilkinson. Global convergene of tridiagonal QR algorithm with origin shifts , 1968 .
[3] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[4] B. S. Garbow,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[5] Daniel Boley,et al. Measuring how far a controllable system is from an uncontrollable one , 1986, IEEE Transactions on Automatic Control.
[6] V. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem , 1962 .
[7] Jack Dongarra,et al. A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .
[8] A. Laub,et al. Numerical linear algebra aspects of control design computations , 1985, IEEE Transactions on Automatic Control.
[9] C. Paige. Properties of numerical algorithms related to computing controllability , 1981 .
[10] James Demmel,et al. Accurate solutions of ill-posed problems in control theory , 1988 .
[11] Karen S. Braman,et al. The Multi-shift Qr-algorithm: Aggressive Deeation, Maintaining Well Focused Shifts, and Level 3 Performance , 1999 .
[12] F Rikus Eising,et al. The distance between a system and the set of uncontrollable systems , 1984 .
[13] David S. Watkins,et al. Shifting Strategies for the Parallel QR Algorithm , 1994, SIAM J. Sci. Comput..
[14] David S. Watkins,et al. Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .
[15] R. Decarlo,et al. Computing the distance to an uncontrollable system , 1991 .
[16] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[17] David S. Watkins,et al. Fundamentals of matrix computations , 1991 .
[18] Ludwig Elsner,et al. An algorithm for computing the distance to uncontrollability , 1991 .
[19] Bo Kågström,et al. RGSD an algorithm for computing the Kronecker structure and reducing subspaces of singular A-lB pencils , 1986 .
[20] Robert A. van de Geijn,et al. Deferred Shifting Schemes for Parallel QR Methods , 1993, SIAM J. Matrix Anal. Appl..
[21] M.L.J. Hautus,et al. Controllability and observability conditions of linear autonomous systems , 1969 .
[22] A. J. Laub,et al. Algebraic Riccati equations and the distance to the nearest uncontrollable pair , 1992 .
[23] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[24] Daniel Boley. Estimating the sensitivity of the algebraic structure of pencils with simple eigenvalue estimates , 1990 .
[25] G. W. Stewart,et al. Algorithm 506: HQR3 and EXCHNG: Fortran Subroutines for Calculating and Ordering the Eigenvalues of a Real Upper Hessenberg Matrix [F2] , 1976, TOMS.
[26] J. G. F. Francis,et al. The QR Transformation - Part 2 , 1962, Comput. J..
[27] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[28] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[29] Huibert Kwakernaak,et al. Linear Optimal Control Systems , 1972 .
[30] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[31] J. Demmel,et al. On swapping diagonal blocks in real Schur form , 1993 .
[32] Jack J. Dongarra,et al. Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.
[33] Gene H. Golub,et al. Matrix computations , 1983 .
[34] Karen S. Braman,et al. The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance , 2001, SIAM J. Matrix Anal. Appl..
[35] J. Demmel. On condition numbers and the distance to the nearest ill-posed problem , 2015 .
[36] F Rikus Eising,et al. Between controllable and uncontrollable , 1984 .
[37] D. Boley,et al. Computing rank-deficiency of rectangular matrix pencils , 1986, 1986 25th IEEE Conference on Decision and Control.
[38] J. Demmel,et al. Stably Computing the Kronecker Structure and Reducing Subspaces of Singular Pencils A-λ for Uncertain Data , 1986 .
[39] Brian T. Smith,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[40] Michael Neumann,et al. A global minimum search algorithm for estimating the distance to uncontrollability , 1993 .
[41] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[42] G. Stewart. Introduction to matrix computations , 1973 .