Robust Permanence for Ecological Maps

We consider ecological difference equations of the form $X_{t+1}^i =X_t^i A_i(X_t)$ where $X_t^i$ is a vector of densities corresponding to the subpopulations of species $i$ (e.g. subpopulations of different ages or living in different patches), $X_t=(X_t^1,X_t^2,\dots,X_t^m)$ is state of the entire community, and $A_i(X_t)$ are matrices determining the update rule for species $i$. These equations are permanent if they are dissipative and the extinction set $\{X: \prod_i \|X^i\|=0\}$ is repelling. If permanence persists under perturbations of the matrices $A_i(X)$, the equations are robustly permanent. We provide sufficient and necessary conditions for robust permanence in terms of Lyapunov exponents for invariant measures supported by the extinction set. Applications to ecological and epidemiological models are given.

[1]  Josef Hofbauer,et al.  Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations , 2003, SIAM J. Math. Anal..

[2]  Josef Hofbauer,et al.  Uniform persistence and repellors for maps , 1989 .

[3]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[4]  Xiao-Qiang Zhao,et al.  Robust persistence for semidynamical systems , 2001 .

[5]  Xiao-Qiang Zhao,et al.  Chain Transitivity, Attractivity, and Strong Repellors for Semidynamical Systems , 2001 .

[6]  Paul L. Salceanu Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. , 2011, Mathematical biosciences and engineering : MBE.

[7]  J. Hofbauer,et al.  Coexistence for systems governed by difference equations of Lotka-Volterra type , 1987, Journal of mathematical biology.

[8]  D. Ruelle,et al.  Analycity properties of the characteristic exponents of random matrix products , 1979 .

[9]  A. Hastings Food Web Theory and Stability , 1988 .

[10]  Sebastian J Schreiber,et al.  Persistence despite perturbations for interacting populations. , 2006, Journal of theoretical biology.

[11]  Mauro Patrão Morse Decomposition of Semiflows on Topological Spaces , 2006 .

[12]  K Sigmund,et al.  Shaken not stirred: on permanence in ecological communities. , 1998, Theoretical population biology.

[13]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[14]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[15]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[16]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[17]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[18]  Z. Teng,et al.  Persistence in dynamical systems , 1990 .

[19]  Josef Hofbauer,et al.  A general cooperation theorem for hypercycles , 1981 .

[20]  Sebastian J. Schreiber,et al.  On Growth Rates of Subadditive Functions for Semiflows , 1998 .

[21]  Xiao-Qiang Zhao,et al.  Dynamical systems in population biology , 2003 .

[22]  Sebastian J. Schreiber,et al.  Criteria for Cr Robust Permanence , 2000 .

[23]  H. I. Freedman,et al.  Mathematical analysis of some three-species food-chain models , 1977 .

[24]  V. Hutson,et al.  A theorem on average Liapunov functions , 1984 .

[25]  Peter Schuster,et al.  Dynamical systems under constant organiza-tion III: Cooperative and competitive behaviour of hypercy , 1979 .

[26]  S. Schreiber,et al.  Persistence in fluctuating environments for interacting structured populations , 2013, Journal of Mathematical Biology.

[27]  S. Schreiber,et al.  Kolmogorov Vector Fields with Robustly Permanent Subsystems , 2002 .

[28]  Konstantin Mischaikow,et al.  The Conley index theory: A brief introduction , 1999 .

[29]  L. Allen,et al.  Comparison of deterministic and stochastic SIS and SIR models in discrete time. , 2000, Mathematical biosciences.

[30]  Anatole Katok,et al.  Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov , 2017 .

[31]  M. Shub,et al.  Stable manifolds for maps , 1980 .

[32]  S. Schreiber On persistence and extinction for randomly perturbed dynamical systems , 2006 .

[33]  J. Roughgarden,et al.  Theory of Population Genetics and Evolutionary Ecology , 1979 .

[34]  Horst R. Thieme,et al.  Dynamical Systems And Population Persistence , 2016 .

[35]  Sebastian J. Schreiber,et al.  Robust permanence for interacting structured populations , 2010, 1005.4146.

[36]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.