Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli.

The frl (fructoselysine) operon encodes fructoselysine 6-kinase and fructoselysine 6-phosphate deglycase, allowing the conversion of fructoselysine into glucose 6-phosphate and lysine. We now show that a third enzyme encoded by this operon catalyses the metal-dependent reversible interconversion of fructoselysine with its C-3 epimer, psicoselysine. The enzyme can be easily assayed through the formation of tritiated water from [3-3H]fructoselysine. Psicoselysine supports the growth of Escherichia coli, causing the induction of the three enzymes of the frl operon. No growth on fructoselysine or psicoselysine was observed with Tn5 mutants in which the putative transporter (FrlA) or fructoselysine 6-phosphate deglycase (FrlB) had been inactivated, indicating the importance of the frl operon for the metabolism of both substrates. The ability of E. coli to grow on psicoselysine suggests the occurrence of this unusual Amadori compound in Nature.

[1]  M. J. Johnson,et al.  A submicrodetermination of glucose. , 1949, The Journal of biological chemistry.

[2]  K. Merz,et al.  Theoretical examination of the mechanism of aldose-ketose isomerization. , 1993, Protein engineering.

[3]  A. Cerami,et al.  Nonenzymatic glycosylation and the pathogenesis of diabetic complications. , 1984, Annals of internal medicine.

[4]  J. Jaroszewski,et al.  Natural glycosides containing allopyranose from the passion fruit plant and circular dichroism of benzaldehyde cyanohydrin glycosides. , 2001, Organic letters.

[5]  T. Ferenci,et al.  Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. , 1974, The Biochemical journal.

[6]  D. Boisvert,et al.  Crystal structure of MJ1247 protein from M. jannaschii at 2.0 A resolution infers a molecular function of 3-hexulose-6-phosphate isomerase. , 2002, Structure.

[7]  M. Kanehisa,et al.  Expert system for predicting protein localization sites in gram‐negative bacteria , 1991, Proteins.

[8]  E. Schaftingen,et al.  Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. , 2000, Diabetes.

[9]  J. Dai,et al.  Glyceroglycolipids from Serratula strangulata. , 2001, Phytochemistry.

[10]  M. Toyota,et al.  New glycosides from the Japanese fern Hymenophyllum barbatum. , 2002, Chemical & pharmaceutical bulletin.

[11]  M. Ashiuchi,et al.  Biochemical evidence that Escherichia coli hyi (orf b0508, gip) gene encodes hydroxypyruvate isomerase. , 1999, Biochimica et biophysica acta.

[12]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[13]  Y. Kimura,et al.  Cloning and characterization of the d-tagatose 3-epimerase gene from Pseudomonas cichorii ST-24 , 1997 .

[14]  V. Monnier,et al.  Novel Degradation Pathway of Glycated Amino Acids into Free Fructosamine by a Pseudomonas sp. Soil Strain Extract (*) , 1995, The Journal of Biological Chemistry.

[15]  F. Collard,et al.  Identification of a Pathway for the Utilization of the Amadori Product Fructoselysine in Escherichia coli * , 2002, The Journal of Biological Chemistry.

[16]  J. Baynes,et al.  The Amadori product on protein: structure and reactions. , 1989, Progress in clinical and biological research.

[17]  P. Finot,et al.  Le blocage de la lysine par la réaction de MAILLARD. I. Synthèse de N‐(désoxy‐1‐D‐fructosyl‐1)‐ et N‐(désoxy‐1‐D‐lactulosyl‐1)‐L‐lysines , 1969 .

[18]  L. Glaser,et al.  On the mechanism of the pentose phosphate epimerases. , 1972, The Journal of biological chemistry.

[19]  S. Banerjee,et al.  The evolution of sugar isomerases. , 1995, Protein engineering.

[20]  C. Park,et al.  The D-allose operon of Escherichia coli K-12 , 1997, Journal of bacteriology.

[21]  V. Monnier,et al.  Isolation, Purification, and Characterization of Amadoriase Isoenzymes (Fructosyl Amine-oxygen Oxidoreductase EC 1.5.3) from Aspergillus sp.* , 1997, The Journal of Biological Chemistry.

[22]  V. Monnier,et al.  Purification and Characterization of a Membrane-bound Deglycating Enzyme (1-Deoxyfructosyl Alkyl Amino Acid Oxidase, EC 1.5.3) from a Pseudomonas sp. Soil Strain* , 1996, The Journal of Biological Chemistry.

[23]  F. Collard,et al.  A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines. , 2003, Diabetes.

[24]  T. Horiuchi,et al.  Purification and Properties of Fructosylamine Oxidase from Aspergillus sp. 1005 , 1991 .

[25]  İ. Çalış,et al.  Triterpene saponins from Scabiosa rotata. , 1998, Phytochemistry.

[26]  N. Saito,et al.  Purification and Properties of Fructosyl-amino Acid Oxidase from Corynebacterium sp. 2-4-1 , 1989 .

[27]  K. Izumori,et al.  Preparation of d-psicose from d-fructose by immobilized d-tagatose 3-epimerase , 1995 .

[28]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[29]  B. Szwergold,et al.  Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. , 2001, Diabetes.

[30]  Gary A. Winans,et al.  I. BIOCHEMICAL EVIDENCE , 1980 .

[31]  F. Collard,et al.  Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes. , 2002, The Biochemical journal.