CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability

Weighted maximum satisfiability and (unweighted) partial maximum satisfiability (PMS) are two significant generalizations of maximum satisfiability (MAX-SAT), and weighted partial maximum satisfiability (WPMS) is the combination of the two, with more important applications in practice. Recently, great breakthroughs have been made on stochastic local search (SLS) for weighted MAX-SAT and PMS, resulting in several state-of-the-art SLS algorithms CCLS, Dist and DistUP. However, compared to the great progress of SLS on weighted MAX-SAT and PMS, the performance of SLS on WPMS lags far behind. In this paper, we present a new SLS algorithm named CCEHC for WPMS. CCEHC employs an extended framework of CCLS with a heuristic emphasizing hard clauses, called EHC. With strong accents on hard clauses, EHC has three components: a variable selection mechanism focusing on configuration checking based only on hard clauses, a weighting scheme for hard clauses, and a biased random walk component. Extensive experiments demonstrate that CCEHC significantly outperforms its state-of-the-art SLS competitors. Further experimental results on comparing CCEHC with a state-of-the-art complete solver show the effectiveness of CCEHC on a number of application WPMS instances, and indicate that CCEHC might be beneficial in practice. Also, empirical analyses confirm the effectiveness of each component underlying the EHC heuristic.

[1]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[2]  Sánchez,et al.  Cluster expansions and the configurational energy of alloys. , 1993, Physical review. B, Condensed matter.

[3]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[4]  Abdul Sattar,et al.  Neighbourhood Clause Weight Redistribution in Local Search for SAT , 2005, CP.

[5]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[6]  Kaile Su,et al.  Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking , 2012, ECAI.

[7]  Simon de Givry,et al.  Mendelian Error Detection in Complex Pedigrees Using Weighted Constraint Satisfaction Techniques , 2007, Constraints.

[8]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[9]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[10]  Paolo Toth,et al.  An electromagnetism metaheuristic for the unicost set covering problem , 2010, Eur. J. Oper. Res..

[11]  Zhe Wu,et al.  An Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems , 2000, AAAI/IAAI.

[12]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[13]  F. Hutter,et al.  ParamILS: an automatic algorithm configuration framework , 2009 .

[14]  Kaile Su,et al.  Exploiting Inference Rules to Compute Lower Bounds for MAX-SAT Solving , 2007, IJCAI.

[15]  S. Dacek,et al.  Finding and proving the exact ground state of a generalized Ising model by convex optimization and MAX-SAT , 2016, 1604.06722.

[16]  Arash Reyhani-Masoleh,et al.  Concurrent Structure-Independent Fault Detection Schemes for the Advanced Encryption Standard , 2010, IEEE Transactions on Computers.

[17]  Wei Wu,et al.  Double Configuration Checking in Stochastic Local Search for Satisfiability , 2014, AAAI.

[18]  Wei Wu,et al.  CCLS: An Efficient Local Search Algorithm for Weighted Maximum Satisfiability , 2015, IEEE Transactions on Computers.

[19]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[20]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[21]  Shaowei Cai,et al.  An effective variable selection heuristic in SLS for weighted Max-2-SAT , 2015, J. Heuristics.

[22]  Luca Aceto,et al.  The complexity of checking consistency of pedigree information and related problems , 2008, Journal of Computer Science and Technology.

[23]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[24]  Nina Narodytska,et al.  Maximum Satisfiability Using Core-Guided MaxSAT Resolution , 2014, AAAI.

[25]  Adrian Kügel,et al.  Improved Exact Solver for the Weighted MAX-SAT Problem , 2010, POS@SAT.

[26]  Maria Luisa Bonet,et al.  SAT-based MaxSAT algorithms , 2013, Artif. Intell..

[27]  Daniel Le Berre,et al.  The Sat4j library, release 2.2 , 2010, J. Satisf. Boolean Model. Comput..

[28]  Oliver Kullmann,et al.  Towards a better understanding of SAT translations , 2011 .

[29]  Wei Wu,et al.  Clause States Based Configuration Checking in Local Search for Satisfiability , 2015, IEEE Transactions on Cybernetics.

[30]  Paul W. Purdom,et al.  Solving Satisfiability with Less Searching , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Simon de Givry,et al.  Computational protein design as an optimization problem , 2014, Artif. Intell..

[32]  Shaowei Cai,et al.  Balance between Complexity and Quality: Local Search for Minimum Vertex Cover in Massive Graphs , 2015, IJCAI.

[33]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[34]  Dale Schuurmans,et al.  The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming , 2001, IJCAI.

[35]  Steven Trimberger,et al.  Security in SRAM FPGAs , 2007, IEEE Design & Test of Computers.

[36]  Kaile Su,et al.  New local search methods for partial MaxSAT , 2016, Artif. Intell..

[37]  Yoyo Hinuma,et al.  Temperature-concentration phase diagram of P 2 -Na x CoO 2 from first-principles calculations , 2008 .

[38]  Kaile Su,et al.  Tailoring Local Search for Partial MaxSAT , 2014, AAAI.

[39]  Maria Luisa Bonet,et al.  Improving WPM2 for (Weighted) Partial MaxSAT , 2013, CP.

[40]  Henry A. Kautz,et al.  Solving Problems with Hard and Soft Constraints Using a Stochastic Algorithm for MAX-SAT , 1995 .

[41]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[42]  Bin Liu,et al.  Parallel AES Encryption Engines for Many-Core Processor Arrays , 2013, IEEE Transactions on Computers.

[43]  Felip Manyà,et al.  Exploiting Cycle Structures in Max-SAT , 2009, SAT.

[44]  Miyuki Koshimura,et al.  Solving the Coalition Structure Generation Problem with MaxSAT , 2012, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.

[45]  Abdul Sattar,et al.  NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover , 2014, J. Artif. Intell. Res..

[46]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[47]  Kaile Su,et al.  Within-problem Learning for Efficient Lower Bound Computation in Max-SAT Solving , 2008, AAAI.

[48]  Matthew Stewart,et al.  IEEE Transactions on Cybernetics , 2015, IEEE Transactions on Cybernetics.

[49]  Kaile Su,et al.  Scoring Functions Based on Second Level Score for k-SAT with Long Clauses , 2014, J. Artif. Intell. Res..

[50]  Carlos Ansótegui,et al.  Solving (Weighted) Partial MaxSAT with ILP , 2013, CPAIOR.

[51]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[52]  Thomas Stützle,et al.  Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.

[53]  Djamal Habet,et al.  Inference Rules in Local Search for Max-SAT , 2012, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.

[54]  Simon de Givry,et al.  Computational Protein Design as a Cost Function Network Optimization Problem , 2012, CP.

[55]  Abdul Sattar,et al.  A Two Level Local Search for MAX-SAT Problems with Hard and Soft Constraints , 2002, Australian Joint Conference on Artificial Intelligence.

[56]  Olivier Roussel,et al.  Controlling a Solver Execution with the runsolver Tool , 2011, J. Satisf. Boolean Model. Comput..

[57]  Wei Wu,et al.  Focused Random Walk with Configuration Checking and Break Minimum for Satisfiability , 2013, CP.

[58]  Kaile Su,et al.  Local search for Boolean Satisfiability with configuration checking and subscore , 2013, Artif. Intell..

[59]  Kaile Su,et al.  CCEHC: An Efficient Local Search Algorithm for Weighted Partial Maximum Satisfiability (Extended Abstract) , 2017, IJCAI.

[60]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[61]  John Thornton,et al.  Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.