Distance Based Merging: A General Framework and some Complexity Results

La fusion de bases de croyances a donn e lieu a une litt erature importante au cours de ces derni eres an-n ees. Nous en donnons ici un mod ele tr es g en eral fond e sur l'utilisation de distances et nous montrons que la plupart des approches propos ees dans la litt era-ture en sont des instances. Ensuite, nous etudions les propri et es calculatoires des op erateurs de fusion : nous donnons d'abord deux r esultats g en eraux qui montrent que, sous des hypoth eses peu restrictives, le probl eme de l'inf erence pour la famille des op erateurs a partir de distances est seulement au premier niveau de la hi erar-chie polynomiale ; puis nous appliquons ces r esultats a certains op erateurs particuliers, et identiions ainsi la complexit e du probl eme de l'inf erence pour ceux-ci. Ennn, nous etudions les propri et es logiques des op era-teurs de fusion a partir de distances. Abstract The importance of belief merging is reeected by the abundance of the literature about it for the last years. In the following, a model for belief merging based on distances is introduced; many merging operators already pointed out so far can be recovered as speciic instances of this model. We investigate the computational aspects of such distance-based operators and give two general results showing that the complexity of inference for them is at the rst level of the polynomial hierarchy (under very weak assumptions). Then some speciic distance-based operators are considered and their complexity is identiied. Finally, distance-based merging operators are investigated from the logical point of view.

[1]  Sarit Kraus,et al.  Combining Knowledge Bases Consisting of First Order Theories , 1991, ISMIS.

[2]  Sven Ove Hansson,et al.  Revision of Belief Sets and Belief Bases , 1998 .

[3]  Didier Dubois,et al.  Encoding Information Fusion in Possibilistic Logic: A General Framework for Rational Syntactic Merging , 2000, ECAI.

[4]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[5]  Klaus W. Wagner More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1987, Theor. Comput. Sci..

[6]  Marco Schaerf,et al.  BReLS: A System for the Integration of Knowledge Bases , 2000, KR.

[7]  Peter Z. Revesz,et al.  On the Semantics of Arbitration , 1997, Int. J. Algebra Comput..

[8]  Sarit Kraus,et al.  Combining Multiple Knowledge Bases , 1991, IEEE Trans. Knowl. Data Eng..

[9]  Bernhard Nebel,et al.  A Knowledge Level Analysis of Belief Revision , 1989, KR.

[10]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[11]  Marco Schaerf,et al.  Arbitration (or How to Merge Knowledge Bases) , 1998, IEEE Trans. Knowl. Data Eng..

[12]  Sébastien Konieczny,et al.  On the Logic of Merging , 1998, KR.

[13]  Jérôme Lang,et al.  Propositional Distances and Preference Representation , 2001, ECSQARU.

[14]  Bernhard Nebel,et al.  How Hard is it to Revise a Belief Base , 1996 .

[15]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[16]  Céline Lafage Représentation de préférences en logique : application à la décision de groupe , 2001 .

[17]  Sébastien Konieczny,et al.  On the Difference between Merging Knowledge Bases and Combining them , 2000, KR.

[18]  Sébastien Konieczny,et al.  Merging with Integrity Constraints , 1999, ESCQARU.

[19]  Francesco M. Donini,et al.  The size of a revised knowledge base , 1995, PODS '95.

[20]  Georg Gottlob,et al.  On the complexity of propositional knowledge base revision, updates, and counterfactuals , 1992, Artif. Intell..

[21]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.

[22]  Gadi Pinkas,et al.  Reasoning, Nonmonotonicity and Learning in Connectionist Networks that Capture Propositional Knowledge , 1995, Artif. Intell..

[23]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[24]  Marco Cadoli,et al.  A Survey on Knowledge Compilation , 1997, AI Commun..

[25]  Alberto O. Mendelzon,et al.  Knowledge Base Merging by Majority , 1999 .