Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization

Abstract Interior-point methods are among the most efficient approaches for solving large-scale nonlinear programming problems. At the core of these methods, highly ill-conditioned symmetric saddle-point problems have to be solved. We present combinatorial methods to preprocess these matrices in order to establish more favorable numerical properties for the subsequent factorization. Our approach is based on symmetric weighted matchings and is used in a sparse direct LDLT factorization method where the pivoting is restricted to static supernode data structures. In addition, we will dynamically expand the supernode data structure in cases where additional fill-in helps to select better numerical pivot elements. This technique can be seen as an alternative to the more traditional threshold pivoting techniques. We demonstrate the competitiveness of this approach within an interior-point method on a large set of test problems from the CUTE and COPS sets, as well as large optimal control problems based on partial differential equations. The largest nonlinear optimization problem solved has more than 12 million variables and 6 million constraints.

[1]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[2]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[3]  T. Tsuchiya,et al.  On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .

[4]  N. Gould,et al.  On iterative methods and implicit-factorization preconditioners for regularized saddle-point systems , 2005 .

[5]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[6]  Wolfgang Fichtner,et al.  Efficient Hybrid Solution of Sparse Linear Systems , 1995 .

[7]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[8]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[9]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[10]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[11]  Olaf Schenk,et al.  Weighted Matchings for Preconditioning Symmetric Indefinite Linear Systems , 2006, SIAM J. Sci. Comput..

[12]  Volker Schulz,et al.  Fast Solution of Discretized Optimization Problems , 2001 .

[13]  Nicholas I. M. Gould,et al.  Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming , 2000, SIAM J. Optim..

[14]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[15]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[16]  Nicholas I. M. Gould,et al.  A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations , 2007, TOMS.

[17]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[18]  Iain S. Duff,et al.  Algorithm 575: Permutations for a Zero-Free Diagonal [F1] , 1981, TOMS.

[19]  H. Mittelmann Sufficient Optimality for Discretized Parabolic and Elliptic Control Problems , 2001 .

[20]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[21]  Arno Liegmann Efficient solution of large sparse linear systems , 1995 .

[22]  Helmut Maurer,et al.  Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints: Part 1. Boundary Control , 2000, Comput. Optim. Appl..

[23]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[24]  Barry W. Peyton,et al.  Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .

[25]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[26]  A. Neumaier,et al.  A NEW PIVOTING STRATEGY FOR GAUSSIAN ELIMINATION , 1996 .

[27]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[28]  Stefan Ulbrich,et al.  A globally convergent primal-dual interior-point filter method for nonlinear programming , 2004, Math. Program..

[29]  Arnold Neumaier,et al.  Scaling and structural condition numbers , 1997 .

[30]  J. Nocedal,et al.  Adaptive Barrier Strategies for Nonlinear Interior Methods , 2022 .

[31]  Anders Forsgren,et al.  Iterative Solution of Augmented Systems Arising in Interior Methods , 2007, SIAM J. Optim..

[32]  Helmut Maurer,et al.  Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints. Part 2: Distributed Control , 2001, Comput. Optim. Appl..

[33]  Wolfgang Fichtner,et al.  Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .

[34]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[35]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[36]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[37]  Iain S. Duff,et al.  Strategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems , 2005, SIAM J. Matrix Anal. Appl..

[38]  Iain S. Duff,et al.  MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.

[39]  Olaf Schenk,et al.  Two-level dynamic scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems , 2002, Parallel Comput..

[40]  Jorge J. Moré,et al.  COPS: Large-scale nonlinearly constrained optimization problems , 2000 .