Travelling Wave Solutions of the Schrödinger-Boussinesq System

We establish exact solutions for the Schrodinger-Boussinesq System , , where and are real constants. The ()-expansion method is used to construct exact periodic and soliton solutions of this equation. Our work is motivated by the fact that the ()-expansion method provides not only more general forms of solutions but also periodic and solitary waves. As a result, hyperbolic function solutions and trigonometric function solutions with parameters are obtained. These solutions may be important and of significance for the explanation of some practical physical problems.

[1]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[2]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[3]  Reza Abazari,et al.  The (G'/G)-expansion method for Tzitzéica type nonlinear evolution equations , 2010, Math. Comput. Model..

[4]  V. G. Makhankov,et al.  On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying boussinesq's equation , 1974 .

[5]  Reza Abazari,et al.  The (G′/G)-expansion method for the coupled Boussinesq equation , 2011 .

[6]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[7]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[8]  Junkichi Satsuma,et al.  Soliton Solutions in a Diatomic Lattice System , 1979 .

[9]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[10]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[11]  Fei Xu,et al.  Application of Exp-function method to Symmetric Regularized Long Wave (SRLW) equation , 2008 .

[12]  Ahmet Bekir,et al.  Travelling wave solutions of nonlinear evolution equations by using the first integral method , 2009 .

[13]  Vladimir E. Zakharov,et al.  On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .

[14]  O. Kaptsov Construction of exact solutions of the Boussinesq equation , 1998 .

[15]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[16]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[17]  Y. Nakamura,et al.  On nonlinear Schrödinger equations with stark effect , 2002 .

[18]  K. Spatschek,et al.  Stability of solitary-wave pulses in shape-memory alloys. , 1987, Physical review. B, Condensed matter.