Graph isomorphism in quasipolynomial time [extended abstract]

We show that the Graph Isomorphism (GI) problem and the more general problems of String Isomorphism (SI) andCoset Intersection (CI) can be solved in quasipolynomial(exp((logn)O(1))) time. The best previous bound for GI was exp(O( √n log n)), where n is the number of vertices (Luks, 1983); for the other two problems, the bound was similar, exp(O~(√ n)), where n is the size of the permutation domain (Babai, 1983). Following the approach of Luks’s seminal 1980/82 paper, the problem we actually address is SI. This problem takes two strings of length n and a permutation group G of degree n (the “ambient group”) as input (G is given by a list of generators) and asks whether or not one of the strings can be transformed into the other by some element of G. Luks’s divide-and-conquer algorithm for SI proceeds by recursion on the ambient group. We build on Luks’s framework and attack the obstructions to efficient Luks recurrence via an interplay between local and global symmetry. We construct group theoretic “local certificates” to certify the presence or absence of local symmetry, aggregate the negative certificates to canonical k-ary relations where k = O(log n), and employ combinatorial canonical partitioning techniques to split the k-ary relational structure for efficient divide-and- conquer. We show that in a well–defined sense, Johnson graphs are the only obstructions to effective canonical partitioning. The central element of the algorithm is the “local certificates” routine which is based on a new group theoretic result, the “Unaffected stabilizers lemma,” that allows us to construct global automorphisms out of local information.

[1]  László Babai Coset Intersection in Moderately Exponential Time , 2013 .

[2]  László Babai,et al.  Canonical labeling of graphs , 1983, STOC.

[3]  Jacques Tits,et al.  Projective representations of minimum degree of group extensions , 1978 .

[4]  Ryan O'Donnell,et al.  Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs , 2014, SODA.

[5]  László Babai,et al.  Permutation groups in NC , 1987, STOC '87.

[6]  Joshua A. Grochow,et al.  Code equivalence and group isomorphism , 2011, SODA '11.

[7]  P. Müller Finite Permutation Groups , 2013 .

[8]  Bertram Huppert,et al.  Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitätsgrad [1] , 1994 .

[9]  L. Babai Monte-Carlo algorithms in graph isomorphism testing , 2006 .

[10]  B. Weisfeiler On construction and identification of graphs , 1976 .

[11]  Xi Chen,et al.  Faster Canonical Forms for Strongly Regular Graphs , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[12]  Daniel A. Spielman,et al.  Faster isomorphism testing of strongly regular graphs , 1996, STOC '96.

[13]  S. Srinivasan,et al.  Maximal subgroups of finite groups , 1990 .

[14]  Martin W. Liebeck,et al.  On Graphs Whose Full Automorphism Group is an Alternative Group or a Finite Classical Group , 1983 .

[15]  Eugene M. Luks,et al.  Permutation Groups and Polynomial-Time Computation , 1996, Groups And Computation.

[16]  M. C. Jordan Traite des substitutions et des equations algebriques , 1870 .

[17]  Cheryl E. Praeger,et al.  On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[18]  Silvio Micali,et al.  Proofs that yield nothing but their validity and a methodology of cryptographic protocol design , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[19]  Eugene M. Luks,et al.  Hypergraph isomorphism and structural equivalence of Boolean functions , 1999, STOC '99.

[20]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[21]  L. Babai On the Order of Uniprimitive Permutation Groups , 1981 .

[22]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1989, 30th Annual Symposium on Foundations of Computer Science.

[23]  Xi Chen,et al.  Multi-stage design for quasipolynomial-time isomorphism testing of steiner 2-systems , 2013, STOC '13.

[24]  Geoffrey Mason,et al.  The Santa Cruz Conference on Finite Groups , 1981 .

[25]  Xiaorui Sun,et al.  Faster Canonical Forms for Primitive Coherent Configurations: Extended Abstract , 2015, STOC.

[26]  Charles C. Sims,et al.  Computation with permutation groups , 1971, SYMSAC '71.

[27]  E. Lander,et al.  Describing Graphs: A First-Order Approach to Graph Canonization , 1990 .

[28]  László Babai,et al.  Isomorhism of Hypergraphs of Low Rank in Moderately Exponential Time , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Helmut Wielandt Über den Transitivitätsgrad von Permutationsgruppen , 1960 .

[30]  László Babai,et al.  Computational complexity and the classification of finite simple groups , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[31]  John E. Hopcroft,et al.  Polynomial-time algorithms for permutation groups , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[32]  László Babai,et al.  Polynomial-Time Isomorphism Test for Groups with No Abelian Normal Subgroups - (Extended Abstract) , 2012, ICALP.

[33]  László Babai,et al.  Asymptotic Delsarte cliques in distance-regular graphs , 2015, Journal of Algebraic Combinatorics.

[34]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[35]  Adolfo Piperno,et al.  Search Space Contraction in Canonical Labeling of Graphs (Preliminary Version) , 2008, ArXiv.

[36]  Peter J. Cameron,et al.  On the orders of primitive groups with restricted nonabelian composition factors , 1982 .

[37]  Eugene M. Luks Computing the composition factors of a permutation group in polynomial time , 1987, Comb..

[38]  Donald E. Knuth Efficient representation of perm groups , 1991, Comb..

[39]  Jacobo Torán,et al.  Isomorphism Testing: Perspective and Open Problems , 2005, Bull. EATCS.

[40]  Albert Atserias,et al.  Sherali-Adams relaxations and indistinguishability in counting logics , 2012, ITCS '12.

[41]  Grant Schoenebeck,et al.  Graph Isomorphism and the Lasserre Hierarchy , 2014, ArXiv.

[42]  Charles C. Sims,et al.  Some group-theoretic algorithms , 1978 .

[43]  Lukasz Grabowski,et al.  Groups with Identical k-Profiles , 2015, Theory Comput..

[44]  Jacobo Torán,et al.  On the hardness of graph isomorphism , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[45]  Rudolf Mathon,et al.  A Note on the Graph Isomorphism counting Problem , 1979, Inf. Process. Lett..

[46]  László Babai,et al.  On the degree of transitivity of permutation groups: A short proof , 1987, J. Comb. Theory, Ser. A.

[47]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .

[48]  László Babai,et al.  On the Number of p -Regular Elements in Finite Simple Groups , 2009 .

[49]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1889 .

[50]  Attila Maróti On the orders of primitive groups , 2002 .

[51]  László Pyber,et al.  On the Orders of Doubly Transitive Permutation Groups, Elementary Estimates , 1993, J. Comb. Theory, Ser. A.

[52]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[53]  H. Weyl Permutation Groups , 2022 .

[54]  László Babai,et al.  Quasipolynomial-time canonical form for steiner designs , 2013, STOC '13.