Titanium transport and isotopic fractionation in the critical zone

[1]  F. Huang,et al.  Dominance of felsic continental crust on Earth after 3 billion years ago is recorded by vanadium isotopes , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Sprung,et al.  Redox-dependent Ti stable isotope fractionation on the Moon: implications for current lunar magma ocean models , 2022, Contributions to Mineralogy and Petrology.

[3]  A. Bekker,et al.  Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling , 2022, Nature Geoscience.

[4]  Jinlong Ma,et al.  Mass-dependent fractionation of titanium stable isotopes during intensive weathering of basalts , 2022, Earth and Planetary Science Letters.

[5]  D. Muir,et al.  Empirical and Experimental Constraints on Fe-Ti Oxide-Melt Titanium Isotope Fractionation Factors , 2022, Goldschmidt2021 abstracts.

[6]  Aleisha C. Johnson,et al.  Clues from Ab Initio Calculations on Titanium Isotopic Fractionation in Tholeiitic and Calc-Alkaline Magma Series , 2021, ACS Earth and Space Chemistry.

[7]  M. Freedman,et al.  Use of Transmission Electron Microscopy for Analysis of Aerosol Particles and Strategies for Imaging Fragile Particles. , 2021, Analytical chemistry.

[8]  A. Nogueira,et al.  Evidence for the Central Atlantic magmatic province (CAMP) in Precambrian and Phanerozoic sedimentary basins of the southern Amazonian Craton, Brazil , 2021 .

[9]  M. Millet,et al.  Reliability of detrital marine sediments as proxy for continental crust composition: The effects of hydrodynamic sorting on Ti and Zr isotope systematics , 2021, Geochimica et Cosmochimica Acta.

[10]  T. Pettke,et al.  Titanium isotopic compositions of bulk rocks and mineral separates from the Kos magmatic suite: Insights into fractional crystallization and magma mixing processes , 2021, Goldschmidt2021 abstracts.

[11]  Aleisha C. Johnson,et al.  Assessing molybdenum isotope fractionation during continental weathering as recorded by weathering profiles in saprolites and bauxites , 2021 .

[12]  P. Sprung,et al.  The redox dependence of titanium isotope fractionation in synthetic Ti-rich lunar melts , 2021, Contributions to Mineralogy and Petrology.

[13]  A. Heard,et al.  Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex , 2020, Science Advances.

[14]  M. Millet,et al.  Melt chemistry and redox conditions control titanium isotope fractionation during magmatic differentiation , 2020, Geochimica et Cosmochimica Acta.

[15]  Xiangkun Zhu,et al.  Titanium isotopic fractionation during magmatic differentiation , 2020, Contributions to Mineralogy and Petrology.

[16]  N. Dauphas,et al.  Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions , 2020 .

[17]  Heng Chen,et al.  Potassium isotope fractionation during chemical weathering of basalts , 2020, Earth and Planetary Science Letters.

[18]  Jinlong Ma,et al.  Potassium isotope fractionation during continental weathering and implications for global K isotopic balance , 2020, Geochimica et Cosmochimica Acta.

[19]  Aleisha C. Johnson,et al.  Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative weathering of the continental crust , 2020, Earth and Planetary Science Letters.

[20]  Shichun Huang,et al.  Equilibrium inter-mineral titanium isotope fractionation: Implication for high-temperature titanium isotope geochemistry , 2020 .

[21]  A. Schmitt,et al.  Petrogenesis of Silicic Magmas in Iceland through Space and Time: The Isotopic Record Preserved in Zircon and Whole Rocks , 2020, The Journal of Geology.

[22]  Aleisha C. Johnson,et al.  Titanium isotopic fractionation in Kilauea Iki lava lake driven by oxide crystallization , 2019, Geochimica et Cosmochimica Acta.

[23]  R. J. Brown,et al.  Lower Crustal Heterogeneity and Fractional Crystallization Control Evolution of Small-volume Magma Batches at Ocean Island Volcanoes (Ascension Island, South Atlantic) , 2019, Journal of Petrology.

[24]  N. Dauphas,et al.  The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust , 2019, Geochimica et Cosmochimica Acta.

[25]  F. Robert,et al.  Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks , 2019, Proceedings of the National Academy of Sciences.

[26]  F. Moynier,et al.  Bridging the depleted MORB mantle and the continental crust using titanium isotopes , 2018, Geochemical Perspectives Letters.

[27]  R. Corkrey,et al.  Role of upper-most crustal composition in the evolution of the Precambrian ocean-atmosphere system , 2018 .

[28]  A. Bekker,et al.  Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago , 2017, Science.

[29]  K. Mezger,et al.  Earth’s early O2 cycle suppressed by primitive continents , 2017 .

[30]  N. Arndt,et al.  Titanium stable isotopic variations in chondrites, achondrites and lunar rocks , 2017 .

[31]  T. Pettke,et al.  Evaluation of Major to Ultra Trace Element Bulk Rock Chemical Analysis of Nanoparticulate Pressed Powder Pellets by LA‐ICP‐MS , 2017 .

[32]  C. Macpherson,et al.  Titanium stable isotope investigation of magmatic processes on the Earth and Moon , 2016 .

[33]  Y. Yokoyama,et al.  Two-step rise of atmospheric oxygen linked to the growth of continents , 2016 .

[34]  Kang Chen,et al.  Archean upper crust transition from mafic to felsic marks the onset of plate tectonics , 2016, Science.

[35]  H. Mattsson,et al.  Origin of the compositional diversity in the basalt-to-dacite series erupted along the Heiðarsporður ridge, NE Iceland , 2015 .

[36]  J. Wijbrans,et al.  Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: Implications for Aegean and Aeolian arc volcanism , 2015 .

[37]  G. Wei,et al.  Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles , 2014 .

[38]  H. Buss,et al.  Natural Weathering Rates of Silicate Minerals , 2014 .

[39]  A. Schmitt,et al.  Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record , 2014 .

[40]  R. Hilton,et al.  Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion , 2014 .

[41]  M. Millet,et al.  Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS , 2014 .

[42]  L. Heaman,et al.  Earth’s earliest evolved crust generated in an Iceland-like setting , 2014 .

[43]  W. McDonough,et al.  Massive magnesium depletion and isotope fractionation in weathered basalts , 2014 .

[44]  R. Hilton,et al.  Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles , 2014 .

[45]  Z. Ding,et al.  Constraints from loess on the Hf–Nd isotopic composition of the upper continental crust , 2014 .

[46]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[47]  W. McDonough,et al.  Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts , 2013 .

[48]  Z. Bao,et al.  Magnesium isotopic variations in loess: Origins and implications , 2013 .

[49]  S. Aciego,et al.  Variable HfSrNd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: Implications for dust flux to oceans, ice sheets and the terrestrial biosphere , 2013 .

[50]  G. Yirgu,et al.  Magmatic history of Dabbahu, a composite volcano in the Afar Rift, Ethiopia , 2013 .

[51]  I. Bindeman,et al.  Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB , 2012 .

[52]  J. Bouchez,et al.  How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon River depth-profiles , 2011 .

[53]  A. Davis,et al.  A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites , 2011 .

[54]  R. B. Georg,et al.  Silicon isotope fractionation during magmatic differentiation , 2011 .

[55]  P. Kubik,et al.  Sediment production and delivery in the Amazon River basin quantified by in situ–produced cosmogenic nuclides and recent river loads , 2011 .

[56]  M. Firdaus,et al.  Strong elemental fractionation of Zr–Hf and Nb–Ta across the Pacific Ocean , 2011 .

[57]  O. Chadwick,et al.  A mass-balance model to separate and quantify colloidal and solute redistributions in soil , 2011 .

[58]  J. Bouchez,et al.  Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles , 2011 .

[59]  F. Métivier,et al.  Prediction of depth‐integrated fluxes of suspended sediment in the Amazon River: particle aggregation as a complicating factor , 2011 .

[60]  R. Rudnick,et al.  Heterogeneous magnesium isotopic composition of the upper continental crust , 2010 .

[61]  L. Gardner,et al.  Contrasting lithium and magnesium isotope fractionation during continental weathering , 2010 .

[62]  M. Pierret,et al.  Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). , 2010 .

[63]  E. Lajeunesse,et al.  Turbulent mixing in the Amazon River: The isotopic memory of confluences , 2010 .

[64]  A. Pourmand,et al.  Routine isotopic analysis of iron by HR-MC-ICPMS: How precise and how accurate? , 2009 .

[65]  M. Willbold,et al.  Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation , 2009 .

[66]  J. Viers,et al.  Chemical composition of suspended sediments in World Rivers: New insights from a new database. , 2009, The Science of the total environment.

[67]  H. Martin,et al.  Could Iceland be a modern analogue for the Earth's early continental crust? , 2008 .

[68]  D. Kröhling,et al.  Non-classical types of loess , 2007 .

[69]  K. Jónasson Silicic volcanism in Iceland: Composition and distribution within the active volcanic zones , 2007 .

[70]  S. Steinthorsson,et al.  Origin of Icelandic basalts: A review of their petrology and geochemistry , 2007 .

[71]  O. Chadwick,et al.  Iron-oxide crystallinity increases during soil redox oscillations , 2006 .

[72]  A. Cortizas,et al.  Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain , 2006 .

[73]  L. Gardner,et al.  Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina , 2004 .

[74]  W. McDonough,et al.  Lithium isotopic composition and concentration of the upper continental crust , 2004 .

[75]  J. Kasting Evolution of a habitable planet , 2003 .

[76]  James A. Smith,et al.  Isotopic constraints on the source of Argentinian loess – with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima , 2003 .

[77]  R. Weibel,et al.  Alteration of detrital Fe-Ti oxides in Miocene fluvial deposits, central Jutland, Denmark , 2003 .

[78]  M. Kohn,et al.  Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon , 2002 .

[79]  Jimin Sun,et al.  Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau , 2002 .

[80]  A. Kerr,et al.  The nature and provenance of accreted oceanic terranes in western Ecuador: geochemical and tectonic constraints , 2002, Journal of the Geological Society.

[81]  S. Gallet,et al.  Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka , 2001 .

[82]  J. Catt The agricultural importance of loess , 2001 .

[83]  Kerstin Lehnert,et al.  A global geochemical database structure for rocks , 2000 .

[84]  F. Luizão,et al.  Evidence of titanium mobility in soil profiles, Manaus, central Amazonia , 1999 .

[85]  B. Dupré,et al.  Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers , 1999 .

[86]  J. Edmond,et al.  Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget , 1998 .

[87]  A. Dia,et al.  Loess geochemistry and its implications for particle origin and composition of the upper continental crust , 1998 .

[88]  F. Farges,et al.  Coordination chemistry of titanium(IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure , 1997 .

[89]  S. Skrabal Distributions of dissolved titanium in Chesapeake Bay and the Amazon River Estuary , 1995 .

[90]  J. Sayago The argentine neotropical loess: An overview , 1995 .

[91]  K. Jónasson Rhyolite volcanism in the Krafla central volcano, north-east Iceland , 1994 .

[92]  Cong-Qiang Liu,et al.  Isotope geochemistry of Quaternary deposits from the arid lands in northern China , 1994 .

[93]  S. Goldstein,et al.  Geochemistry of Heard Island (Southern Indian Ocean): Characterization of an Enriched Mantle Component and Implications for Enrichment of the Sub-Indian Ocean Mantle , 1994 .

[94]  J. Moutte,et al.  Sedimentary Fractionations between Al, Ti, and Zr and the Genesis of Strongly Peraluminous Granites , 1994, The Journal of Geology.

[95]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[96]  M. Zárate,et al.  Late Pleistocene-Holocene eolian deposits of the southern Buenos Aires province, Argentina: A preliminary model , 1993 .

[97]  J. Lautridou,et al.  The loess of West Europe , 1991 .

[98]  N. Óskarsson,et al.  Origin of silicic magma in Iceland revealed by Th isotopes , 1991 .

[99]  B. Marsh,et al.  Hawaiian basalt and Icelandic rhyolite: Indicators of differentiation and partial melting , 1991 .

[100]  E. Boyle,et al.  Dissolved titanium in the open ocean , 1990, Nature.

[101]  Peter R. Hooper,et al.  The Grande Ronde Basalt, Columbia River Basalt Group; Stratigraphic descriptions and correlations in Washington, Oregon, and Idaho , 1989 .

[102]  Donald A. Swanson,et al.  Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group , 1989 .

[103]  S. J. Goldstein,et al.  The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater , 1987 .

[104]  William E. Dietrich,et al.  Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis , 1987 .

[105]  R. Gilkes,et al.  Weathering of Ilmenite in a Lateritic Pallid Zone , 1984 .

[106]  H. Putzer The geological evolution of the Amazon basin and its mineral resources , 1984 .

[107]  S. Taylor,et al.  Geochemistry of loess, continental crustal composition and crustal model ages , 1983 .

[108]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[109]  S. Reidel Stratigraphy and petrogenesis of the Grande Ronde Basalt from the deep canyon country of Washington, Oregon, and Idaho , 1983 .

[110]  I. Bryant LOESS DEPOSITS IN LOWER ADVENTDALEN, SPITSBERGEN , 1982 .

[111]  I. Kheoruenromne,et al.  Geochemistry and Mineralogy of an Unusual Diabase Saprolite Near Columbia, South Carolina , 1981 .

[112]  H. Nesbitt,et al.  Mobility and fractionation of rare earth elements during weathering of a granodiorite , 1979, Nature.

[113]  M. Meybeck,et al.  Elemental mass-balance of material carried by major world rivers , 1979 .

[114]  I. Kheoruenromne,et al.  Isovolumetric geochemical investigation of a buried granite saprolite near Columbia, SC, U.S.A. , 1978 .

[115]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[116]  R. Gibbs The Geochemistry of the Amazon River System: Part I. The Factors that Control the Salinity and the Composition and Concentration of the Suspended Solids , 1967 .