Decomposition and classification of electroencephalography data

1 In this study, we aim to automatically identify multiple artifact types in EEG. 2 We used multinomial regression to classify independent components of EEG data, select3 ing from 65 spatial, spectral, and temporal features of independent components using forward 4 selection. The classifier identified neural and five non-neural types of components. 5 Between subjects within studies, high classification performances were obtained. Between 6 studies, however, classification was more difficult. For neural vs. non-neural classifications, 7 performance was on par with previous results obtained by others. 8 We found that automatic separation of multiple artifact classes is possible with a small 9 feature set. 10 Our method can reduce manual workload and allow for the selective removal of artifact 11 classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain 12 from activity causing them. 13

[1]  Cuntai Guan,et al.  A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface , 2011, Clinical EEG and neuroscience.

[2]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[3]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[4]  P. König,et al.  Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data , 2012, Front. Hum. Neurosci..

[5]  Boris Reuderink,et al.  Robust Brain-Computer Interfaces , 2011 .

[6]  G. Pfurtscheller,et al.  A fully automated correction method of EOG artifacts in EEG recordings , 2007, Clinical Neurophysiology.

[7]  E. Oja,et al.  BSS and ICA in Neuroinformatics: From Current Practices to Open Challenges , 2008, IEEE Reviews in Biomedical Engineering.

[8]  Stefan Haufe,et al.  EEG potentials predict upcoming emergency brakings during simulated driving , 2011, Journal of neural engineering.

[9]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[10]  Kenneth Hugdahl,et al.  The two halves of the brain : information processing in the cerebral hemispheres , 2010 .

[11]  Klaus-Robert Müller,et al.  Motor Imagery for Severely Motor-Impaired Patients: Evidence for Brain-Computer Interfacing as Superior Control Solution , 2014, PloS one.

[12]  Jean-Michel Jolion,et al.  Normalized radial basis function networks and bilinear discriminant analysis for face recognition , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[13]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[14]  Sven Hoffmann,et al.  The Correction of Eye Blink Artefacts in the EEG: A Comparison of Two Prominent Methods , 2008, PloS one.

[15]  Wim Van Paesschen,et al.  Canonical Decomposition of Ictal Scalp EEG and Accurate Source Localisation: Principles and Simulation Study , 2007, Comput. Intell. Neurosci..

[16]  M. Tangermann,et al.  Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals , 2011, Behavioral and Brain Functions.

[17]  Chwan-Lu Tseng,et al.  An automatic analysis method for detecting and eliminating ECG artifacts in EEG , 2007, Comput. Biol. Medicine.

[18]  B. W. Jervis,et al.  Effect on EEG responses of removing ocular artefacts by proportional EOG subtraction , 2006, Medical and Biological Engineering and Computing.

[19]  Jesús Angulo,et al.  Classification of hyperspectral images by tensor modeling and additive morphological decomposition , 2013, Pattern Recognit..

[20]  Klaus-Robert Müller,et al.  Neurophysiological predictor of SMR-based BCI performance , 2010, NeuroImage.

[21]  G. Pfurtscheller,et al.  The BCI competition III: validating alternative approaches to actual BCI problems , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[22]  D. L. Schomer,et al.  Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields , 2012 .

[23]  A. Kübler,et al.  Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials , 2014, Journal of NeuroEngineering and Rehabilitation.

[24]  Joep J. M. Kierkels,et al.  A model-based objective evaluation of eye movement correction in EEG recordings , 2006, IEEE Transactions on Biomedical Engineering.

[25]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[26]  A. Mognon,et al.  ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. , 2011, Psychophysiology.

[27]  Sabine Van Huffel,et al.  Classification of Structured EEG Tensors Using Nuclear Norm Regularization: Improving P300 Classification , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[28]  Stefan Haufe,et al.  Removal of muscular artefacts for the analysis of brain oscillations: Comparison between ICA and SSD , 2015, ICML 2015.

[29]  Xu Tan,et al.  Logistic Tensor Regression for Classification , 2012, IScIDE.

[30]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[31]  S. Huffel,et al.  Neonatal seizure localization using PARAFAC decomposition , 2009, Clinical Neurophysiology.

[32]  Tapani Ristaniemi,et al.  Analysis of ongoing EEG elicited by natural music stimuli using nonnegative tensor factorization , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[33]  Stefan Haufe,et al.  Finding brain oscillations with power dependencies in neuroimaging data , 2014, NeuroImage.

[34]  Pierre Kornprobst,et al.  Modeling in Computational Biology and Biomedicine: A Multidisciplinary Endeavor , 2012 .

[35]  Liqing Zhang,et al.  Cardiology knowledge free ECG feature extraction using generalized tensor rank one discriminant analysis , 2014, EURASIP J. Adv. Signal Process..

[36]  J. Friedman Regularized Discriminant Analysis , 1989 .

[37]  Zhengjia He,et al.  Independent component analysis based source number estimation and its comparison for mechanical systems , 2012 .

[38]  Dimitri Van De Ville,et al.  The impact of denoising on independent component analysis of functional magnetic resonance imaging data , 2013, Journal of Neuroscience Methods.

[39]  G. Pfurtscheller,et al.  Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[40]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[41]  Wojciech Samek,et al.  Investigating effects of different artefact types on motor imagery BCI , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[42]  Dorothy V. M. Bishop,et al.  Journal of Neuroscience Methods , 2015 .

[43]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[44]  Sabine Van Huffel,et al.  Single Trial Classification for Mobile BCI - A Multiway Kernel Approach , 2015, BIOSIGNALS.

[45]  W. Ridder,et al.  Suppression of contrast sensitivity during eyelid blinks , 1993, Vision Research.

[46]  Jaakko Malmivuo,et al.  Effect of skull resistivity and measurement noise on the spatial resolution of EEG , 2005 .

[47]  C. Neuper,et al.  Event-related dynamics of brain oscillations , 2006 .

[48]  Caroline Fossati,et al.  About Classification Methods Based on Tensor Modelling for Hyperspectral Images , 2009, FGIT-SIP.

[49]  Rajesh P. N. Rao,et al.  Towards adaptive classification for BCI , 2006, Journal of neural engineering.

[50]  R. Oostenveld,et al.  Neuronal Dynamics Underlying High- and Low-Frequency EEG Oscillations Contribute Independently to the Human BOLD Signal , 2011, Neuron.

[51]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[52]  Dennis J. McFarland,et al.  Brain-computer interface (BCI) operation: signal and noise during early training sessions , 2005, Clinical Neurophysiology.

[53]  Wanli Ma,et al.  Tensor decomposition and application in image classification with histogram of oriented gradients , 2015, Neurocomputing.

[54]  Bhaskar D. Rao,et al.  Newton method for the ICA mixture model , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[55]  Weiwei Guo,et al.  Tensor Learning for Regression , 2012, IEEE Transactions on Image Processing.

[56]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[57]  Mercedes Atienza,et al.  Muscle Artifact Removal from Human Sleep EEG by Using Independent Component Analysis , 2008, Annals of Biomedical Engineering.

[58]  Florian Roemer,et al.  Multi-dimensional PARAFAC2 component analysis of multi-channel EEG data including temporal tracking , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[59]  Karen O. Egiazarian,et al.  Measuring directional coupling between EEG sources , 2008, NeuroImage.

[60]  Constantine Kotropoulos,et al.  A tensor-based approach for automatic music genre classification , 2008, 2008 16th European Signal Processing Conference.

[61]  Klaus-Robert Müller,et al.  Towards Zero Training for Brain-Computer Interfacing , 2008, PloS one.

[62]  G. Geetha,et al.  Noise Cancellation of Ocular and Muscular Artifacts from EEG Signals Based on Adaptive Filtering , 2012 .

[63]  Constantine Kotropoulos,et al.  Non-Negative Tensor Factorization Applied to Music Genre Classification , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[64]  Philip S. Yu,et al.  DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages , 2014, SDM.

[65]  T. Gasser,et al.  The transfer of EOG activity into the EEG for eyes open and closed. , 1985, Electroencephalography and clinical neurophysiology.

[66]  Mohamed Hamid,et al.  Applying ICA in EEG: Choice of the Window Length and of the Decorrelation Method , 2012, BIOSTEC.

[67]  Andrew Tucker,et al.  The effect of blinks and saccadic eye movements on visual reaction times , 2009, Attention, perception & psychophysics.

[68]  Stephanie Brandl,et al.  Robust artifactual independent component classification for BCI practitioners , 2014, Journal of neural engineering.

[69]  Masashi Sugiyama,et al.  Averaging covariance matrices for EEG signal classification based on the CSP: An empirical study , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[70]  Wojciech Samek,et al.  Information geometry meets BCI spatial filtering using divergences , 2014, 2014 International Winter Workshop on Brain-Computer Interface (BCI).

[71]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[72]  Jun Huan,et al.  Feature Selection in the Tensor Product Feature Space , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[73]  Carsten Allefeld,et al.  Advanced Methods of Electrophysiological Signal Analysis and Symbol Grounding?: Dynamical Systems Approaches to Language , 2008 .

[74]  Bo Jiang,et al.  A framework of constraint preserving update schemes for optimization on Stiefel manifold , 2013, Math. Program..

[75]  Paolo Bientinesi,et al.  High-Performance Solvers for Dense Hermitian Eigenproblems , 2012, SIAM J. Sci. Comput..

[76]  Theodoros N. Arvanitis,et al.  Influence of signal preprocessing on ICA-based EEG decomposition , 2014 .

[77]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[78]  Izabela Rejer,et al.  Benefits of ICA in the Case of a Few Channel EEG , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[79]  Claus A. Andersson,et al.  PARAFAC2—Part II. Modeling chromatographic data with retention time shifts , 1999 .

[80]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[81]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[82]  Andrzej Cichocki,et al.  Nonnegative Tensor Factorization for Continuous EEG Classification , 2007, Int. J. Neural Syst..

[83]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[84]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[85]  Erkki Oja,et al.  Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings , 1997, NIPS.

[86]  Xuelong Li,et al.  Tensor Rank One Discriminant Analysis - A convergent method for discriminative multilinear subspace selection , 2008, Neurocomputing.

[87]  Cuntai Guan,et al.  Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms , 2011, IEEE Transactions on Biomedical Engineering.

[88]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[89]  Marta Kutas,et al.  Identifying reliable independent components via split-half comparisons , 2009, NeuroImage.

[90]  W. Vetter Matrix Calculus Operations and Taylor Expansions , 1973 .

[91]  S. Muthukumaraswamy High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations , 2013, Front. Hum. Neurosci..

[92]  Andrzej Cichocki,et al.  Improving the Quality of EEG Data in Patients with Alzheimer's Disease Using ICA , 2009, ICONIP.

[93]  N. Birbaumer,et al.  BCI2000: a general-purpose brain-computer interface (BCI) system , 2004, IEEE Transactions on Biomedical Engineering.

[94]  Mannes Poel,et al.  Classifying motor imagery in presence of speech , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[95]  Tzyy-Ping Jung,et al.  Repeated decompositions reveal the stability of infomax decomposition of fMRI data , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[96]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[97]  Jean Vroomen,et al.  Neural Correlates of Multisensory Integration of Ecologically Valid Audiovisual Events , 2007, Journal of Cognitive Neuroscience.

[98]  G. Sperling,et al.  Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. , 2006, Cerebral cortex.

[99]  Harold W. Gutch,et al.  Independent Subspace Analysis Is Unique, Given Irreducibility , 2007, ICA.

[100]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[101]  Stephanie Brandl,et al.  Brain–computer interfacing under distraction: an evaluation study , 2016, Journal of neural engineering.

[102]  J R Wolpaw,et al.  Spatial filter selection for EEG-based communication. , 1997, Electroencephalography and clinical neurophysiology.

[103]  Aapo Hyvärinen,et al.  Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis , 2010, NeuroImage.

[104]  R. Kass,et al.  Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[105]  Andrey Eliseyev,et al.  Recursive N-Way Partial Least Squares for Brain-Computer Interface , 2013, PloS one.

[106]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[107]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[108]  Jan B. F. van Erp,et al.  A Tactile P300 Brain-Computer Interface , 2010, Front. Neurosci..

[109]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[110]  Klaus-Robert Müller,et al.  Learning From More Than One Data Source: Data Fusion Techniques for Sensorimotor Rhythm-Based Brain–Computer Interfaces , 2015, Proceedings of the IEEE.

[111]  Klaus-Robert Müller,et al.  On Optimal Channel Configurations for SMR-based Brain–Computer Interfaces , 2010, Brain Topography.

[112]  R. Bro,et al.  A classification tool for N-way array based on SIMCA methodology , 2011 .

[113]  Face configuration affects speech perception: Evidence from a McGurk mismatch negativity study , 2015, Neuropsychologia.

[114]  Motoaki Kawanabe,et al.  Learning a common dictionary for subject-transfer decoding with resting calibration , 2015, NeuroImage.

[115]  Tom Eichele,et al.  Semi-automatic identification of independent components representing EEG artifact , 2009, Clinical Neurophysiology.

[116]  Masashi Sugiyama,et al.  Theoretical and Experimental Analyses of Tensor-Based Regression and Classification , 2015, Neural Computation.

[117]  R. Oostenveld,et al.  Independent EEG Sources Are Dipolar , 2012, PloS one.

[118]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[119]  Liqing Zhang,et al.  Regularized tensor discriminant analysis for single trial EEG classification in BCI , 2010, Pattern Recognit. Lett..

[120]  Rodney J Croft,et al.  Issues relating to the subtraction phase in EOG artefact correction of the EEG. , 2002, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[121]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[122]  Cuntai Guan,et al.  Optimizing Spatial Filters by Minimizing Within-Class Dissimilarities in Electroencephalogram-Based Brain–Computer Interface , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[123]  Rasmus Bro,et al.  SCREAM: A novel method for multi-way regression problems with shifts and shape changes in one mode , 2013 .

[124]  R. Harshman PARAFAC2: Extensions of a Procedure for “Explanatory” Factor‐Analysis and Multidimensional Scaling , 1972 .

[125]  R N Vigário,et al.  Extraction of ocular artefacts from EEG using independent component analysis. , 1997, Electroencephalography and clinical neurophysiology.

[126]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[127]  Stefan Haufe,et al.  Dimensionality reduction for the analysis of brain oscillations , 2014, NeuroImage.

[128]  Motoaki Kawanabe,et al.  Divergence-Based Framework for Common Spatial Patterns Algorithms , 2014, IEEE Reviews in Biomedical Engineering.

[129]  Dong Xu,et al.  Discriminant analysis with tensor representation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[130]  Lucas C. Parra,et al.  Recipes for the linear analysis of EEG , 2005, NeuroImage.

[131]  Shozo Tobimatsu,et al.  Steady-state vibration somatosensory evoked potentials: physiological characteristics and tuning function , 1999, Clinical Neurophysiology.

[132]  A. Stegeman Degeneracy in Candecomp/Parafac and Indscal Explained For Several Three-Sliced Arrays With A Two-Valued Typical Rank , 2007, Psychometrika.

[133]  Andreas Ziehe,et al.  TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .

[134]  Lucas C. Parra,et al.  Bilinear Discriminant Component Analysis , 2007, J. Mach. Learn. Res..

[135]  Stephanie Brandl,et al.  Bringing BCI into everyday life: Motor imagery in a pseudo realistic environment , 2015, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER).

[136]  Tzyy-Ping Jung,et al.  High-speed spelling with a noninvasive brain–computer interface , 2015, Proceedings of the National Academy of Sciences.

[137]  Stephanie Brandl,et al.  Robust common spatial patterns based on Bhattacharyya distance and Gamma divergence , 2015, The 3rd International Winter Conference on Brain-Computer Interface.

[138]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[139]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[140]  Morten Mørup,et al.  Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..

[141]  Dan Schonfeld,et al.  Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[143]  Stefan Haufe,et al.  Identifying Granger causal relationships between neural power dynamics and variables of interest , 2015, NeuroImage.

[144]  Jie Li,et al.  EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme , 2016, Comput. Intell. Neurosci..

[145]  Klaus-Robert Müller,et al.  Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring , 2008, Journal of Neuroscience Methods.

[146]  Hualou Liang,et al.  Single-Trial Decoding of Bistable Perception Based on Sparse Nonnegative Tensor Decomposition , 2008, Comput. Intell. Neurosci..

[147]  Lucas C. Parra,et al.  Smooth bilinear classification of EEG , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[148]  Begoña Garcia-Zapirain,et al.  EEG artifact removal—state-of-the-art and guidelines , 2015, Journal of neural engineering.

[149]  Aapo Hyvärinen,et al.  Independent component analysis: recent advances , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[150]  R. Verleger,et al.  Parafac and go/no-go: disentangling CNV return from the P3 complex by trilinear component analysis. , 2013, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[151]  S P Fitzgibbon,et al.  Removal of EEG Noise and Artifact Using Blind Source Separation , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[152]  Motoaki Kawanabe,et al.  Stationary common spatial patterns for brain–computer interfacing , 2012, Journal of neural engineering.

[153]  Brendan Z. Allison,et al.  Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction , 2013 .

[154]  Ronald M. Aarts,et al.  A Survey of Stimulation Methods Used in SSVEP-Based BCIs , 2010, Comput. Intell. Neurosci..

[155]  Lotfi Senhadji,et al.  Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches , 2012, EURASIP J. Adv. Signal Process..

[156]  T. Kolda Multilinear operators for higher-order decompositions , 2006 .

[157]  R. Köhling,et al.  What is the Source of the EEG? , 2009, Clinical EEG and neuroscience.

[158]  M. Kawanabe,et al.  Improving BCI Performance by Modified Common Spatial Patterns with Robustly Averaged Covariance Matrices , 2009 .

[159]  Larry S. Davis,et al.  Discriminative Tensor Sparse Coding for Image Classification , 2013, BMVC.

[160]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[161]  Stephen J. Roberts,et al.  Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation , 2004, IEEE Transactions on Biomedical Engineering.

[162]  Shuangzhe Liu,et al.  Hadamard, Khatri-Rao, Kronecker and Other Matrix Products , 2008 .

[163]  B. Meffert,et al.  EEG artifact elimination by extraction of ICA-component features using image processing algorithms , 2015, Journal of Neuroscience Methods.

[164]  Liqing Zhang,et al.  Single-trial discrimination of EEG signals for stroke patients: A general multi-way analysis , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[165]  Andreas Ziehe,et al.  A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation , 2004, J. Mach. Learn. Res..

[166]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[167]  Klaus Gramann,et al.  Dimension-based attention modulates early visual processing. , 2010, Psychophysiology.

[168]  J. Wolpaw,et al.  Brain–computer interfaces in neurological rehabilitation , 2008, The Lancet Neurology.

[169]  Carsten Völcker,et al.  IMMOPTIBOX: A Matlab Toolbox for Optimization and Data Fitting , 2010 .

[170]  Klaus-Robert Müller,et al.  Subject-independent mental state classification in single trials , 2009, Neural Networks.

[171]  Aapo Hyvärinen,et al.  Testing Independent Component Patterns by Inter-Subject or Inter-Session Consistency , 2013, Front. Hum. Neurosci..

[172]  R. Bro,et al.  PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model , 1999 .

[173]  Philip S. Yu,et al.  Tensor-Based Multi-view Feature Selection with Applications to Brain Diseases , 2014, 2014 IEEE International Conference on Data Mining.

[174]  Allan Kardec Barros,et al.  A fixed-point algorithm for independent component analysis which uses a priori information , 1998, Proceedings 5th Brazilian Symposium on Neural Networks (Cat. No.98EX209).

[175]  Tobias S. Andersen,et al.  Classification of independent components of EEG into multiple artifact classes. , 2015, Psychophysiology.

[176]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[177]  Xiaoshan Li,et al.  Tucker Tensor Regression and Neuroimaging Analysis , 2018, Statistics in Biosciences.

[178]  G. R. Muller,et al.  Clinical application of an EEG-based brain–computer interface: a case study in a patient with severe motor impairment , 2003, Clinical Neurophysiology.

[179]  S. Debener,et al.  Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away. , 2014, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[180]  Motoaki Kawanabe,et al.  Robust Common Spatial Filters with a Maxmin Approach , 2014, Neural Computation.

[181]  L. Osterhout,et al.  The independence of combinatory semantic processing: Evidence from event-related potentials , 2005 .

[182]  Gabriel Curio,et al.  A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition , 2011, NeuroImage.

[183]  Ming Li,et al.  2D-LDA: A statistical linear discriminant analysis for image matrix , 2005, Pattern Recognit. Lett..

[184]  Stefan Haufe,et al.  On the interpretation of weight vectors of linear models in multivariate neuroimaging , 2014, NeuroImage.

[185]  Scott Makeig,et al.  High-frequency Broadband Modulations of Electroencephalographic Spectra , 2009, Front. Hum. Neurosci..

[186]  Benjamin Blankertz,et al.  A Novel 9-Class Auditory ERP Paradigm Driving a Predictive Text Entry System , 2011, Front. Neurosci..

[187]  Christian Sander,et al.  ICA-based muscle artefact correction of EEG data: What is muscle and what is brain? Comment on McMenamin et al. , 2011, NeuroImage.

[188]  K. Müller,et al.  Finding stationary subspaces in multivariate time series. , 2009, Physical review letters.

[189]  Junbin Gao,et al.  Tensor Regression Based on Linked Multiway Parameter Analysis , 2014, 2014 IEEE International Conference on Data Mining.

[190]  Miguel Angel Mañanas,et al.  A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A simulation case , 2008, Comput. Biol. Medicine.

[191]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[192]  R. Ward,et al.  EMG and EOG artifacts in brain computer interface systems: A survey , 2007, Clinical Neurophysiology.

[193]  Jens Haueisen,et al.  Independent component analysis: comparison of algorithms for the investigation of surface electrical brain activity , 2009, Medical & Biological Engineering & Computing.

[194]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[195]  Raghu Machiraju,et al.  Image Segmentation with Tensor – Based Classification of N – Point Correlation Functions , 2006 .

[196]  Qiquan Shi,et al.  Learning Tensor-Based Features for Whole-Brain fMRI Classification , 2015, MICCAI.

[197]  James Bailey,et al.  A Bayesian Classifier for Learning from Tensorial Data , 2013, ECML/PKDD.

[198]  F. D. Silva EEG: Origin and Measurement , 2009 .

[199]  Liqing Zhang,et al.  Slice Oriented Tensor Decomposition of EEG Data for Feature Extraction in Space, Frequency and Time Domains , 2009, ICONIP.

[200]  Aapo Hyvärinen,et al.  Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood , 1998, Neurocomputing.

[201]  Cuntai Guan,et al.  High performance P300 speller for brain-computer interface , 2004, IEEE International Workshop on Biomedical Circuits and Systems, 2004..

[202]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[203]  Hugo Vélez-Pérez,et al.  Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling , 2012, Biomed. Signal Process. Control..

[204]  Andrzej Cichocki,et al.  Tensor classification for P300-based brain computer interface , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[205]  Xuelong Li,et al.  Supervised tensor learning , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[206]  R. Verleger,et al.  Decomposition of 3-way arrays: A comparison of different PARAFAC algorithms , 2014 .

[207]  Yun Fu,et al.  Image Classification Using Correlation Tensor Analysis , 2008, IEEE Transactions on Image Processing.

[208]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[209]  Klaus-Robert Müller,et al.  On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[210]  Mikhail Belkin,et al.  Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis , 2013, NIPS.

[211]  Richard J. Davidson,et al.  Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG , 2010, NeuroImage.

[212]  J. Wolpaw,et al.  EMG contamination of EEG: spectral and topographical characteristics , 2003, Clinical Neurophysiology.