On the state-of-the-art of particle methods for coastal and ocean engineering

ABSTRACT The article aims at providing an up-to-date review on several latest advancements related to particle methods with applications in coastal and ocean engineering. The latest advancements corresponding to accuracy, stability, conservation properties, multiphase multi-physics multi-scale simulations, fluid-structure interactions, exclusive coastal/ocean engineering applications and computational efficiency are reviewed. The future perspectives for further enhancement of applicability and reliability of particle methods for coastal/ocean engineering applications are also highlighted.

[1]  Abbas Khayyer,et al.  Numerical simulation for sediment transport using MPS-DEM coupling model , 2017, Advances in Water Resources.

[2]  Q. Ma,et al.  On the Coupling of Incompressible SPH with a Finite Element Potential Flow Solver for Nonlinear Free-Surface Flows , 2018, International Journal of Offshore and Polar Engineering.

[3]  T. Zohdi,et al.  A hybrid Lagrangian Voronoi–SPH scheme , 2017, Computational Particle Mechanics.

[4]  Salvatore Marrone,et al.  Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows , 2017, Comput. Phys. Commun..

[5]  Shaowu Li,et al.  Improved SPH simulation of spilled oil contained by flexible floating boom under wave–current coupling condition , 2018 .

[6]  Abbas Khayyer,et al.  Numerical Investigation of the Morphological Dynamics of a Step-and-Pool Riverbed Using DEM-MPS , 2018 .

[7]  D. Violeau,et al.  A SPH elastic-viscoplastic model for granular flows and bed-load transport , 2018 .

[8]  Xiping Yu,et al.  Development of a two-phase SPH model for sediment laden flows , 2017, Comput. Phys. Commun..

[9]  Paolo Veltri,et al.  Solitary wave-induced forces on horizontal circular cylinders: Laboratory experiments and SPH simulations , 2017 .

[10]  Abbas Khayyer,et al.  On enhancement of energy conservation properties of projection-based particle methods , 2017 .

[11]  H. Bui,et al.  A coupled fluid-solid SPH approach to modelling flow through deformable porous media , 2017 .

[12]  Hitoshi GOTOH,et al.  Computational wave dynamics for innovative design of coastal structures , 2017, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[13]  Seiichi Koshizuka,et al.  The overlapping particle technique for multi-resolution simulation of particle methods , 2017 .

[14]  Wen-yang Duan,et al.  An improved solid boundary treatment for wave-float interactions using ISPH method , 2017 .

[15]  Rui M. L. Ferreira,et al.  Resolved Simulation of a Granular-Fluid Flow with a Coupled SPH-DCDEM Model , 2017 .

[16]  Ping Dong,et al.  Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction , 2017 .

[17]  P. Lin,et al.  A new two-step projection method in an ISPH model for free surface flow computations , 2017 .

[18]  Corrado Altomare,et al.  Long-crested wave generation and absorption for SPH-based DualSPHysics model , 2017 .

[19]  A. Colagrossi,et al.  Challenges on the numerical prediction of slamming loads on LNG tank insulation panels , 2017 .

[20]  Corrado Altomare,et al.  Towards simulating floating offshore oscillating water column converters with Smoothed Particle Hydrodynamics , 2017 .

[21]  Hassan Akbari,et al.  Simulation of wave overtopping using an improved SPH method , 2017 .

[22]  David Le Touzé,et al.  An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods , 2017, Comput. Phys. Commun..

[23]  Benedict D. Rogers,et al.  Two-Phase Incompressible-Compressible (Water-Air) Smoothed Particle Hydrodynamics (ICSPH) Method Applied to Focused Wave Slam on Decks , 2017 .

[24]  Bin Chen,et al.  A multiphase MPS solver for modeling multi-fluid interaction with free surface and its application in oil spill , 2017 .

[25]  A. Colagrossi,et al.  SPH energy conservation for fluid–solid interactions , 2017 .

[26]  Nikolaus A. Adams,et al.  A weakly compressible SPH method based on a low-dissipation Riemann solver , 2017, J. Comput. Phys..

[27]  Dan Negrut,et al.  A consistent multi-resolution smoothed particle hydrodynamics method , 2017, 1704.04260.

[28]  A. Colagrossi,et al.  On the filtering of acoustic components in weakly-compressible SPH simulations , 2017 .

[29]  C. J. Coetzee,et al.  Review: Calibration of the discrete element method , 2017 .

[30]  A. Colagrossi,et al.  SPH modelling of viscous flow past a circular cylinder interacting with a free surface , 2017 .

[31]  B. Rogers,et al.  A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles , 2017 .

[32]  Seiichi Koshizuka,et al.  An ALE particle method using upwind interpolation , 2017 .

[33]  Hitoshi Gotoh,et al.  Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context , 2017, J. Comput. Phys..

[34]  Salvatore Marrone,et al.  The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme , 2017 .

[35]  K. Liao,et al.  Corrected First-Order Derivative ISPH in Water Wave Simulations , 2017 .

[36]  Abbas Yeganeh-Bakhtiary,et al.  A Numerical Study on Hydrodynamics of Standing Waves in Front of Caisson Breakwaters with WCSPH Model , 2017 .

[37]  D. Liang,et al.  Incompressible SPH simulation of solitary wave interaction with movable seawalls , 2017 .

[38]  Simon Tait,et al.  SPH modelling of depth‐limited turbulent open channel flows over rough boundaries , 2016, International journal for numerical methods in fluids.

[39]  Chong Peng,et al.  Multiphase SPH modeling of free surface flow in porous media with variable porosity , 2017 .

[40]  Abbas Khayyer,et al.  Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming , 2017 .

[41]  H. Gotoh,et al.  WAVE OVERTOPPOING ANALYSIS ON WAVE ABSORBING SEAWALL USING IMPROVED MULTI-RESOLUTION MPS METHOD , 2017 .

[42]  Abbas Khayyer,et al.  An Enhanced Particle Method for Simulation of Fluid Flow Interactions with Saturated Porous Media , 2017 .

[43]  Benedict D. Rogers,et al.  Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D , 2017, Comput. Phys. Commun..

[44]  Benedict D. Rogers,et al.  An Eulerian-Lagrangian incompressible SPH formulation (ELI-SPH) , 2018 .

[45]  Steven J. Lind,et al.  High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion , 2016, J. Comput. Phys..

[46]  R. Dalrymple,et al.  Diffusive terms for the conservation of mass equation in SPH , 2016 .

[47]  Mostafa Safdari Shadloo,et al.  Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges , 2016 .

[48]  Dong Wang,et al.  ISPH Simulation of Scour Behind Seawall Due to Continuous Tsunami Overflow , 2016 .

[49]  Ping Dong,et al.  A SPH numerical wave basin for modeling wave-structure interactions , 2016 .

[50]  Hua Liu,et al.  Two-phase SPH simulation of fluid–structure interactions , 2016 .

[51]  Decheng Wan,et al.  Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method , 2016 .

[52]  Benedict D. Rogers,et al.  Fixed and moored bodies in steep and breaking waves using SPH with the Froude–Krylov approximation , 2016 .

[53]  Benedict D. Rogers,et al.  Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU) , 2016 .

[54]  Salvatore Marrone,et al.  SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms , 2016, J. Comput. Phys..

[55]  Rui M. L. Ferreira,et al.  SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows , 2016, Comput. Phys. Commun..

[56]  Hitoshi Gotoh,et al.  Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering , 2016 .

[57]  Salvatore Marrone,et al.  Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows , 2016, J. Comput. Phys..

[58]  Benedict D. Rogers,et al.  Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH) , 2016, J. Comput. Phys..

[59]  Benedict D. Rogers,et al.  Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity , 2016 .

[60]  Songdong Shao,et al.  Smoothed Particle Hydrodynamics Simulations of Dam-Break Flows Around Movable Structures , 2016 .

[61]  David Le Touzé,et al.  On distributed memory MPI-based parallelization of SPH codes in massive HPC context , 2016, Comput. Phys. Commun..

[62]  Hitoshi Gotoh,et al.  A Multiphase Compressible-Incompressible Particle Method for Water Slamming , 2016 .

[63]  Moubin Liu,et al.  Particle Methods for Multi-Scale and Multi-Physics , 2016 .

[64]  C. Memos,et al.  Numerical modeling of surf zone dynamics under weakly plunging breakers with SPH method , 2016 .

[65]  D. Violeau,et al.  Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future , 2016 .

[66]  Corrado Altomare,et al.  Hybridization of the Wave Propagation Model SWASH and the Meshfree Particle Method SPH for Real Coastal Applications , 2015 .

[67]  Songdong Shao,et al.  Incompressible SPH simulation of wave interaction with porous structure , 2015 .

[68]  Nikolaus A. Adams,et al.  Towards consistence and convergence of conservative SPH approximations , 2015, J. Comput. Phys..

[69]  R. Dalrymple,et al.  SPH modeling of dynamic impact of tsunami bore on bridge piers , 2015 .

[70]  A. Tayebi,et al.  Development of Moving Particle Explicit (MPE) method for incompressible flows , 2015 .

[71]  Xudong Fu,et al.  Incompressible SPH scour model for movable bed dam break flows , 2015 .

[72]  Dominique Laurence,et al.  DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics , 2015 .

[73]  Damien Violeau,et al.  Buoyancy modelling with incompressible SPH for laminar and turbulent flows , 2015 .

[74]  A. Colagrossi,et al.  Energy balance in the δ-SPH scheme , 2015 .

[75]  A. Colagrossi,et al.  Prediction of energy losses in water impacts using incompressible and weakly compressible models , 2015 .

[76]  Ping Dong,et al.  Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method , 2015 .

[77]  Salvatore Marrone,et al.  Numerical Simulations of the Flow Past Surface-Piercing Objects , 2015 .

[78]  Mostafa Safdari Shadloo,et al.  Numerical Simulation of Long Wave Runup for Breaking and Nonbreaking Waves , 2015 .

[79]  Corrado Altomare,et al.  Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures , 2015 .

[80]  Stephen M. Longshaw,et al.  DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH) , 2015, Comput. Phys. Commun..

[81]  Abbas Khayyer,et al.  Space potential particles to enhance the stability of projection-based particle methods , 2015 .

[82]  Benedict D. Rogers,et al.  Numerical predictions of water–air wave slam using incompressible–compressible smoothed particle hydrodynamics , 2015 .

[83]  H. Gotoh,et al.  MPS-BASED SIMULATION OF SCOURING DUE TO SUBMERGED VERTICAL JET WITH SUB-PARTICLE-SCALE SUSPENDED LOAD MODEL , 2015 .

[84]  Xing Zheng,et al.  Comparative study of different SPH schemes on simulating violent water wave impact flows , 2014 .

[85]  Bing Ren,et al.  SPH-DEM Modeling of the Hydraulic Stability of 2D Blocks on a Slope , 2014 .

[86]  Hitoshi Gotoh,et al.  Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems , 2014 .

[87]  S. L. RazaviToosi,et al.  Two-phase SPH modelling of waves caused by dam break over a movable bed , 2014 .

[88]  Robert A. Dalrymple,et al.  Three-dimensional reversed horseshoe vortex structures under broken solitary waves , 2014 .

[89]  C. Negro,et al.  SPH for the Simulation of a Dam-Break with Floating Objects , 2014 .

[90]  Ping Dong,et al.  Numerical simulation of wave interaction with porous structures using an improved smoothed particle hydrodynamic method , 2014 .

[91]  Taro Arikawa,et al.  On enhancement of Incompressible SPH method for simulation of violent sloshing flows , 2014 .

[92]  Corrado Altomare,et al.  Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics , 2014 .

[93]  R. Dalrymple,et al.  Three-Dimensional SPH Modeling of a Bar/Rip Channel System , 2014 .

[94]  Andrea Colagrossi,et al.  A critical investigation of smoothed particle hydrodynamics applied to problems with free‐surfaces , 2013 .

[95]  A. Colagrossi,et al.  Nonlinear water wave interaction with floating bodies in SPH , 2013 .

[96]  Liu Chao Qiu,et al.  OpenCL-Based GPU Acceleration of ISPH Simulation for Incompressible Flows , 2013 .

[97]  Xiaosong Sun,et al.  Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method , 2013, J. Comput. Phys..

[98]  Abbas Khayyer,et al.  A short note on Dynamic Stabilization of Moving Particle Semi-implicit method , 2013 .

[99]  R. Panton Surface Tension Effects , 2013 .

[100]  Moncho Gómez-Gesteira,et al.  New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters , 2013, Comput. Phys. Commun..

[101]  K. Kakuda,et al.  Three-dimensional Fluid Flow Simulations UsingGPU-based Particle Method , 2013 .

[102]  Bo Li,et al.  GPU-accelerated adaptive particle splitting and merging in SPH , 2013, Comput. Phys. Commun..

[103]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[104]  Benedict D. Rogers,et al.  Variable resolution for SPH: A dynamic particle coalescing and splitting scheme , 2013 .

[105]  Moncho Gómez-Gesteira,et al.  Smoothed Particle Hydrodynamics for coastal engineering problems , 2013 .

[106]  Ashkan Rafiee,et al.  A simple SPH algorithm for multi‐fluid flow with high density ratios , 2013 .

[107]  Dominique Laurence,et al.  Unified semi‐analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method , 2013 .

[108]  Thomas R. Allen Mechanics of Flexible Composite Hull Panels Subjected to Water Impacts , 2013 .

[109]  D. Violeaua,et al.  Numerical Modelling of Boom and Oil Spill with SPH , 2013 .

[110]  Salvatore Marrone,et al.  Numerical diffusive terms in weakly-compressible SPH schemes , 2012, Comput. Phys. Commun..

[111]  Murray Rudman,et al.  Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows , 2012 .

[112]  Benedict D. Rogers,et al.  SPHysics - development of a free-surface fluid solver - Part 1: Theory and formulations , 2012, Comput. Geosci..

[113]  Robert A. Dalrymple,et al.  SPHysics - development of a free-surface fluid solver - Part 2: Efficiency and test cases , 2012, Comput. Geosci..

[114]  Salvatore Marrone,et al.  Study of ship wave breaking patterns using 3D parallel SPH simulations , 2012 .

[115]  Mohammad Piri,et al.  Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media , 2012, Comput. Phys. Commun..

[116]  Damien Violeau,et al.  Fluid Mechanics and the SPH Method: Theory and Applications , 2012 .

[117]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[118]  S. Tan,et al.  SPH modeling of solitary wave fissions over uneven bottoms , 2012 .

[119]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[120]  Rui Gao,et al.  Numerical modelling of regular wave slamming on subface of open-piled structures with the corrected SPH method , 2012 .

[121]  Hitoshi Gotoh,et al.  GPU-acceleration for Moving Particle Semi-Implicit method , 2011 .

[122]  A. Colagrossi,et al.  Publisher's Note: Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows [Phys. Rev. E 84, 026705 (2011)] , 2011 .

[123]  G. Müller,et al.  Surface tension effects on energy dissipation by small scale, experimental breaking waves , 2011 .

[124]  Matteo Antuono,et al.  Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[125]  B. Rogers,et al.  GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods , 2011, PloS one.

[126]  A. Colagrossi,et al.  δ-SPH model for simulating violent impact flows , 2011 .

[127]  Seiichi Koshizuka,et al.  Current Achievements and Future Perspectives on Particle Simulation Technologies for Fluid Dynamics and Heat Transfer , 2011 .

[128]  G. Oger,et al.  SPH simulation of green water and ship flooding scenarios , 2010 .

[129]  P. M. Guilcher,et al.  Simulations of Hydro-Elastic Impacts Using a Parallel SPH Model , 2010 .

[130]  Bertrand Alessandrini,et al.  Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method , 2010 .

[131]  E.-S. Lee,et al.  MODELLING NONLINEAR WATER WAVES WITH RANS AND LES SPH MODELS , 2010 .

[132]  Salvatore Marrone,et al.  Free-surface flows solved by means of SPH schemes with numerical diffusive terms , 2010, Comput. Phys. Commun..

[133]  Songdong Shao,et al.  Incompressible SPH flow model for wave interactions with porous media , 2010 .

[134]  H. Gotoh,et al.  Fluid-Elastoplastic Hybrid Model for Computational Mechanics of Wave-Induced Sea Cliff Erosion , 2010 .

[135]  Robert A. Dalrymple,et al.  SPH on GPU with CUDA , 2010 .

[136]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[137]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .

[138]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[139]  Robert A. Dalrymple,et al.  Hybridation of generation propagation models and SPH model to study severe sea states in Galician Coast , 2008 .

[140]  N. Mori,et al.  Aeration and bubble measurements of coastal breaking waves , 2008 .

[141]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[142]  Damien Violeau,et al.  Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview , 2007 .

[143]  D. Graham,et al.  Simulation of wave overtopping by an incompressible SPH model , 2006 .

[144]  Hitoshi Gotoh,et al.  Key issues in the particle method for computation of wave breaking , 2006 .

[145]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[146]  Robert A. Dalrymple,et al.  Green water overtopping analyzed with a SPH model , 2005 .

[147]  STUDY ON BEACH PROFILE CHANGE AND WAVE INDUCED VELOCITY FIELD IN PERMEABLE BEACH , 2004 .

[148]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[149]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[150]  Shu-ichiro Inutsuka Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver , 2002 .

[151]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[152]  Hitoshi Gotoh,et al.  Sub-particle-scale turbulence model for the MPS method , 2001 .

[153]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[154]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[155]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[156]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[157]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .