Laser surface modification of biodegradable polymers and biomedical applications

[1]  Hae Woon Choi,et al.  Micropatterning and characterization of electrospun poly(ε‐caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications , 2011, Biotechnology and bioengineering.

[2]  Kester Nahen,et al.  Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation. , 2002, Journal of biomedical optics.

[3]  Hae Woon Choi,et al.  Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation , 2007 .

[4]  M. Oujja,et al.  Nanofoaming in the surface of biopolymers by femtosecond pulsed laser irradiation , 2007 .

[5]  Morphological Observations of Mesenchymal Stem Cell Adhesion to a Nanoperiodic-Structured Titanium Surface Patterned Using Femtosecond Laser Processing , 2012 .

[6]  Jerri A. Tribble,et al.  Dynamics of gelatin ablation due to Free-Electron Laser irradiation , 1997 .

[7]  Dave F. Farson,et al.  Vascular Wall Engineering Via Femtosecond Laser Ablation: Scaffolds with Self-Containing Smooth Muscle Cell Populations , 2011, Annals of Biomedical Engineering.

[8]  Li Yao,et al.  Effect of functionalized micropatterned PLGA on guided neurite growth. , 2009, Acta biomaterialia.

[9]  Lay Poh Tan,et al.  Human mesenchymal stem-cell behaviour on direct laser micropatterned electrospun scaffolds with hierarchical structures. , 2013, Macromolecular bioscience.

[10]  Krzysztof M. Abramski,et al.  Laser micromachining and modification of bioabsorbable polymers , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[11]  Waldemar Mróz,et al.  Laser induced surface modification of polylactide , 2012 .

[12]  W Zingg,et al.  Protein adsorption to polymer particles: role of surface properties. , 1987, Journal of biomedical materials research.

[13]  Alina Sionkowska,et al.  Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime , 2005 .

[14]  Stefan Nolte,et al.  Micromachining using femtosecond lasers , 2000, International Symposium on Laser Precision Microfabrication.

[15]  Hiroshi Itoh,et al.  Characterization of water contribution to excimer laser ablation of collagen , 2001 .

[16]  Katrin Sternberg,et al.  Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. , 2005, Journal of biomechanical engineering.

[17]  Huade Tan,et al.  Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer , 2012 .

[18]  M. Oujja,et al.  Laser induced foaming and chemical modifications of gelatine films , 2008 .

[19]  Krzysztof M. Abramski,et al.  Fabrication of a polymer-based biodegradable stent using a CO2 laser , 2014 .

[20]  S. Lazare,et al.  Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films , 2007 .

[21]  Y. Yao,et al.  Effect of Laser-Induced Crystallinity Modification on Biodegradation Profile of Poly(L-Lactic Acid) , 2014 .

[22]  Shaochen Chen,et al.  Laser-based microscale patterning of biodegradable polymers for biomedical applications , 2003 .

[23]  Kunio Awazu,et al.  Gelatin ablation wavelength dependency in the range of 5.6–6.7 μm using a mid-infrared Free Electron Laser , 2003 .

[24]  S. Lazare,et al.  The influence of KrF excimer laser irradiation on the surface of collagen and collagen/PVP films , 2006 .

[25]  Boris N. Chichkov,et al.  Three dimensional microstructuring of biopolymers by femtosecond laser irradiation , 2009 .

[26]  Jian Yu,et al.  Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. , 2012, Acta biomaterialia.

[27]  M Degrange,et al.  Correlation between substratum roughness and wettability, cell adhesion, and cell migration. , 1997, Journal of biomedical materials research.

[28]  Wai Yee Yeong,et al.  Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer. , 2010, Tissue engineering. Part C, Methods.

[29]  Ping-Han Wu,et al.  Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation , 2012, International journal of nanomedicine.

[30]  Guoqiang Xie,et al.  Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser , 2014 .

[31]  Michel Vert,et al.  Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media , 1990 .

[32]  V. Svorcik,et al.  Controlled biopolymer roughness induced by plasma and excimer laser treatment , 2013 .

[33]  S. Lazare,et al.  Negative pressure model for surface foaming of collagen and other biopolymer films by KrF laser ablation , 2007 .

[34]  Shan Sun,et al.  3D femtosecond laser patterning of collagen for directed cell attachment. , 2005, Biomaterials.

[35]  A Ranella,et al.  Direct laser writing of 3D scaffolds for neural tissue engineering applications , 2011, Biofabrication.

[36]  Wai Yee Yeong,et al.  Annealing of Biodegradable Polymer Induced by Femtosecond Laser Micromachining , 2010 .

[37]  F. Wen,et al.  Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells. , 2012, Acta biomaterialia.

[38]  Zengbo Wang,et al.  Laser surface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications , 2005 .

[39]  V. Svorcik,et al.  Surface ablation of PLLA induced by KrF excimer laser , 2013 .

[40]  Shaochen Chen,et al.  Micro and nano-fabrication of biodegradable polymers for drug delivery. , 2004, Advanced drug delivery reviews.

[41]  Alyssa Panitch,et al.  Polymeric biomaterials for tissue and organ regeneration , 2001 .

[42]  M. Oujja,et al.  Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration , 2012 .

[43]  Mohamed Oujja,et al.  Laser-induced periodic surface structuring of biopolymers , 2013 .

[44]  J. Toca-Herrera,et al.  Ultra-fast laser microprocessing of medical polymers for cell engineering applications. , 2014, Materials science & engineering. C, Materials for biological applications.

[45]  Shaochen Chen,et al.  Fabrication of Biodegradable Polymeric Micro-Devices Using Laser Micromachining , 2002 .

[46]  Iban Quintana,et al.  Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response , 2011 .

[47]  J. Kivilahti,et al.  Effect of surface processing on the attachment, orientation, and proliferation of human gingival fibroblasts on titanium. , 1992, Journal of biomedical materials research.

[48]  M. Castillejo,et al.  Femtosecond laser processing of biopolymers at high repetition rate. , 2008, Physical chemistry chemical physics : PCCP.

[49]  Mohamed Oujja,et al.  Submicron foaming in gelatine by nanosecond and femtosecond pulsed laser irradiation , 2007 .

[50]  É. Kiss,et al.  XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films. , 2002, Journal of colloid and interface science.

[51]  Mohamed Oujja,et al.  Submicro foaming in biopolymers by UV pulsed laser irradiation , 2006, SPIE High-Power Laser Ablation.

[52]  Shaochen Chen,et al.  Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. , 2005, Biomaterials.

[53]  M. Oujja,et al.  UV, visible and IR laser interaction with gelatine , 2007 .

[54]  Sudesh Kumar Yadav,et al.  Biodegradable polymeric nanoparticles based drug delivery systems. , 2010, Colloids and surfaces. B, Biointerfaces.