Breakout dynasearch for the single-machine total weighted tardiness problem

BDS combines the dynasearch and an adaptive perturbation mechanism.The dynasearch is improved with a fast neighbourhood search.BDS is a competitive metaheuristic to solve 300-job instances in 252s in average. We present a breakout dynasearch algorithm (BDS) for solving the single-machine total weighted tardiness problem, in which a set of independent jobs with distinct processing times, weights, and due dates are to be scheduled on a single machine to minimize the sum of the weighted tardiness of all the jobs. BDS explores the search space by combining the dynasearch procedure and the adaptive perturbation strategy. Experimental results show that BDS virtually solves all the standard benchmark problem instances with 40, 50, and 100 jobs from the literature within 0.1s. For 500 larger instances with 150, 200, 250, and 300 jobs, BDS obtains all the upper bounds with the same objective function of the optimal solutions within an average of 252s, demonstrating the efficacy of BDS in terms of both solution quality and computational efficiency. We also analyze some key features of BDS to identify its success factors.

[1]  Jin-Kao Hao,et al.  Breakout Local Search for the Max-Cutproblem , 2013, Eng. Appl. Artif. Intell..

[2]  T. C. E. Cheng,et al.  Single machine scheduling to minimize total weighted tardiness , 2005, Eur. J. Oper. Res..

[3]  Matthijs den Besten,et al.  Design of Iterated Local Search Algorithms , 2001, EvoWorkshops.

[4]  Xianpeng Wang,et al.  A Hybrid VNS with TS for the Single Machine Scheduling Problem to Minimize the Sum of Weighted Tardiness of Jobs , 2008, ICIC.

[5]  T. C. Edwin Cheng,et al.  Unrelated parallel-machine scheduling with deteriorating maintenance activities , 2011, Comput. Ind. Eng..

[6]  Xianpeng Wang,et al.  A population-based variable neighborhood search for the single machine total weighted tardiness problem , 2009, Comput. Oper. Res..

[7]  T. Ibaraki Enumerative approaches to combinatorial optimization - part I , 1988 .

[8]  Leyuan Shi,et al.  On the equivalence of the max-min transportation lower bound and the time-indexed lower bound for single-machine scheduling problems , 2007, Math. Program..

[9]  Shunji Tanaka,et al.  An exact algorithm for single-machine scheduling without machine idle time , 2009, J. Sched..

[10]  Pei-Chann Chang,et al.  Memes co‐evolution strategies for fast convergence in solving single machine scheduling problems , 2012 .

[11]  Chris N. Potts,et al.  A survey of algorithms for the single machine total weighted tardiness scheduling problem , 1990, Discret. Appl. Math..

[12]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[13]  Tapan Sen,et al.  Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey , 2003 .

[14]  Chris N. Potts,et al.  Single Machine Tardiness Sequencing Heuristics , 1991 .

[15]  Jin-Kao Hao,et al.  A Study of Breakout Local Search for the Minimum Sum Coloring Problem , 2012, SEAL.

[16]  Yun-Chia Liang,et al.  Particle swarm optimization and differential evolution for the single machine total weighted tardiness problem , 2006 .

[17]  Boulevard Lavoisier,et al.  Breakout local search for the quadratic assignment problem , 2013 .

[18]  Massimo Paolucci,et al.  A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem , 2008 .

[19]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[20]  R. Storer,et al.  A problem space algorithm for single machine weighted tardiness problems , 2003 .

[21]  Boulevard Lavoisier,et al.  Breakout Local Search for the Max-Cut Problem , 2014 .

[22]  Chris N. Potts,et al.  A Branch and Bound Algorithm for the Total Weighted Tardiness Problem , 1985, Oper. Res..

[23]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[24]  Jin-Kao Hao,et al.  Breakout Local Search for maximum clique problems , 2013, Comput. Oper. Res..

[25]  A. Volgenant,et al.  Improved heuristics for the n-job single-machine weighted tardiness problem , 1999, Comput. Oper. Res..

[26]  James B. Orlin,et al.  Fast neighborhood search for the single machine total weighted tardiness problem , 2006, Oper. Res. Lett..

[27]  B. J. Lageweg,et al.  Minimizing Total Costs in One-Machine Scheduling , 1975, Oper. Res..

[28]  T. C. Edwin Cheng,et al.  Group scheduling and job-dependent due window assignment based on a common flow allowance , 2014, Comput. Ind. Eng..

[29]  Wojciech Bozejko,et al.  Block approach - tabu search algorithm for single machine total weighted tardiness problem , 2006, Comput. Ind. Eng..

[30]  Jin-Kao Hao,et al.  Breakout local search for the Steiner tree problem with revenue, budget and hop constraints , 2014, Eur. J. Oper. Res..

[31]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[32]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[33]  Martin Josef Geiger New Instances for the Single Machine Total Weighted Tardiness Problem , 2010 .

[34]  Ahmet B. Keha,et al.  Mixed integer programming formulations for single machine scheduling problems , 2009, Comput. Ind. Eng..

[35]  T. Ibaraki,et al.  A dynamic programming method for single machine scheduling , 1994 .

[36]  Chris N. Potts,et al.  An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..

[37]  T. C. Edwin Cheng,et al.  Flowshop scheduling of deteriorating jobs on dominating machines , 2011, Comput. Ind. Eng..

[38]  Matthijs den Besten,et al.  Ant Colony Optimization for the Total Weighted Tardiness Problem , 2000, PPSN.

[39]  Martin Josef Geiger,et al.  On heuristic search for the single machine total weighted tardiness problem - Some theoretical insights and their empirical verification , 2010, Eur. J. Oper. Res..

[40]  Martin Josef Geiger The Single Machine Total Weighted Tardiness Problem - Is it (for Metaheuristics) a Solved Problem ? , 2009, ArXiv.

[41]  Chandrasekharan Rajendran,et al.  A fast ant-colony algorithm for single-machine scheduling to minimize the sum of weighted tardiness of jobs , 2005, J. Oper. Res. Soc..

[42]  T. C. Edwin Cheng,et al.  Complexity of cyclic scheduling problems: A state-of-the-art survey , 2010, Comput. Ind. Eng..

[43]  Furkan Kiraç,et al.  A tabu search algorithm for the single machine total weighted tardiness problem , 2007, Eur. J. Oper. Res..

[44]  Jeffrey E. Schaller,et al.  Dispatching heuristics for the single machine weighted quadratic tardiness scheduling problem , 2012, Comput. Oper. Res..

[45]  Jin-Kao Hao,et al.  Breakout Local Search for the Vertex Separator Problem , 2013, IJCAI.

[46]  Roberto Tadei,et al.  An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem , 2004, Oper. Res. Lett..