Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide.

[1]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[2]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[3]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[4]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[5]  A. Radenović,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[6]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[7]  A. Javey,et al.  Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes , 2013 .

[8]  Xiaobo Yin,et al.  Exciton-related electroluminescence from monolayer MoS2 , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[9]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2013, ACS nano.

[10]  Lain‐Jong Li,et al.  Large-Area and Highly Crystalline WSe2 Monolayers: from Synthesis to Device Applications , 2013 .

[11]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[12]  R. Schmidt,et al.  Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂. , 2013, Optics express.

[13]  Fan Zhang,et al.  Unconventional quantum Hall effect and tunable spin hall effect in Dirac materials: application to an isolated MoS2 trilayer. , 2013, Physical review letters.

[14]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[15]  G. Steele,et al.  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[16]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[17]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[18]  H. Zeng,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[19]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[20]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[21]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[22]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[23]  J. Brivio,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[24]  B. Wees,et al.  A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride , 2011, 1110.1045.

[25]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[26]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[27]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[28]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[29]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[30]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[31]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[32]  E. Vogel,et al.  Enhanced channel modulation in dual-gated silicon nanowire transistors. , 2005, Nano letters.

[33]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. U. Lee,et al.  Carbon nanotube p-n junction diodes , 2004 .

[35]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[36]  A. Jayakumar,et al.  Exact analytical solution for current flow through diode with series resistance , 2000 .

[37]  S. Wagner,et al.  pn junctions in tungsten diselenide , 1983 .

[38]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[39]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.

[40]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.