Infinite-Horizon Joint LQG Synthesis of Switching and Feedback in Discrete Time

Given a multi-modal linear plant, the objective is to obtain a mode switching sequence and a switching-path-dependent feedback controller that jointly stabilize the plant and achieve a desired LQG performance. The synthesis of a dynamic output feedback controller can be carried out separately from that of a switching sequence between modes. Moreover, the switching sequence can be obtained by iteratively solving convex programs.

[1]  D. Stanford,et al.  Some Convergence Properties of Matrix Sets , 1994 .

[2]  Ji-Woong Lee Inequality-Based Properties of Detectability and Stabilizability of Linear Time-Varying Systems in Discrete Time , 2009, IEEE Trans. Autom. Control..

[3]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[4]  H. Witsenhausen Separation of estimation and control for discrete time systems , 1971 .

[5]  Ji-Woong Lee,et al.  Uniform stabilization of discrete-time switched and Markovian jump linear systems , 2006, Autom..

[6]  W. Hager,et al.  Convergence and Stability Properties of the Discrete Riccati Operator Equation and the Associated Optimal Control and Filtering Problems , 1976 .

[7]  Pramod P. Khargonekar,et al.  Optimal Output Regulation for Discrete-Time Switched and Markovian Jump Linear Systems , 2008, SIAM J. Control. Optim..

[8]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[9]  B. Anderson,et al.  Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems , 1981 .

[10]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[11]  Donald B. Johnson,et al.  Finding All the Elementary Circuits of a Directed Graph , 1975, SIAM J. Comput..

[12]  Pramod P. Khargonekar,et al.  Detectability and Stabilizability of Discrete-Time Switched Linear Systems , 2009, IEEE Transactions on Automatic Control.

[13]  Michael Athans,et al.  1972 IFAC congress paper: On the determination of optimal costly measurement strategies for linear stochastic systems , 1972 .

[14]  Bo Lincoln,et al.  LQR optimization of linear system switching , 2002, IEEE Trans. Autom. Control..

[15]  Ji-Woong Lee,et al.  A computational stability analysis of discrete-time piecewise linear systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[16]  L. Meier,et al.  Optimal control of measurement subsystems , 1967 .

[17]  Abrahim Lavi,et al.  Optimal observation policies in linear stochastic systems , 1968 .

[18]  Izumi Masubuchi,et al.  LMI-based controller synthesis: A unified formulation and solution , 1998 .

[19]  Ge Yu,et al.  Progress in WWW Research and Development, 10th Asia-Pacific Web Conference, APWeb 2008, Shenyang, China, April 26-28, 2008. Proceedings , 2008, APWeb.

[20]  Pierre-Alexandre Bliman,et al.  Stability Analysis of Discrete-Time Switched Systems Through Lyapunov Functions with Nonminimal State , 2003, ADHS.

[21]  Geir E. Dullerud,et al.  Uniformly Stabilizing Sets of Switching Sequences for Switched Linear Systems , 2007, IEEE Transactions on Automatic Control.

[22]  Mark S. Andersland,et al.  On the optimality of open-loop LQG measurement scheduling , 1995, IEEE Trans. Autom. Control..

[23]  Jianghai Hu,et al.  On Optimal Quadratic Regulation for Discrete-Time Switched Linear Systems , 2008, HSCC.

[24]  Vincent D. Blondel,et al.  Open Problems in Mathematical Systems and Control Theory , 2011 .

[25]  Geir E. Dullerud,et al.  Optimal Disturbance Attenuation for Discrete-Time Switched and Markovian Jump Linear Systems , 2006, SIAM J. Control. Optim..