Advances in hole transport materials engineering for stable and efficient perovskite solar cells

[1]  M. White Electrical properties , 2012, Physics Subject Headings (PhySH).

[2]  R. Schropp,et al.  Supporting Information High-Efficiency Humidity-Stable Planar Perovskite Solar Cells Based On Atomic Layer Architecture , 2016 .

[3]  S. Zakeeruddin,et al.  Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells , 2017 .

[4]  M. Nazeeruddin,et al.  Interface Play between Perovskite and Hole Selective Layer on the Performance and Stability of Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[5]  A. Di Carlo,et al.  Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination , 2016 .

[6]  Zong-Liang Tseng,et al.  Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers , 2016 .

[7]  C. Brabec,et al.  Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells , 2016 .

[8]  Ming Li,et al.  Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6% , 2016 .

[9]  Jie Zhu,et al.  Large Planar π-Conjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[10]  Rajan Jose,et al.  Progress, challenges and perspectives in flexible perovskite solar cells , 2016 .

[11]  M. Grätzel,et al.  Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[12]  L. Cinà,et al.  Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. , 2016, ChemSusChem.

[13]  Cherie R. Kagan,et al.  Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer. , 2016, ACS nano.

[14]  S. Zakeeruddin,et al.  Dopant-Free Donor (D)-π-D-π-D Conjugated Hole-Transport Materials for Efficient and Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[15]  Seigo Ito,et al.  Research Update: Overview of progress about efficiency and stability on perovskite solar cells , 2016 .

[16]  F. Rossi,et al.  Research Update: Behind the high efficiency of hybrid perovskite solar cells , 2016 .

[17]  A. Alnuaimi,et al.  Effect of mobility and band structure of hole transport layer in planar heterojunction perovskite solar cells using 2D TCAD simulation , 2016 .

[18]  C. Brabec,et al.  Exploring the Limiting Open‐Circuit Voltage and the Voltage Loss Mechanism in Planar CH3NH3PbBr3 Perovskite Solar Cells , 2016 .

[19]  Henry J. Snaith,et al.  Research Update: Strategies for improving the stability of perovskite solar cells , 2016 .

[20]  T. Brown,et al.  Solar Cells Incorporating Water/Alcohol-Soluble Electron-Extracting DNA Nanolayers , 2016 .

[21]  V. Ahmadi,et al.  Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells. , 2016, ChemSusChem.

[22]  Rajan Jose,et al.  Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. , 2016, Physical chemistry chemical physics : PCCP.

[23]  P. Dhingra,et al.  Hole-Transporting Materials for Perovskite-Sensitized Solar Cells , 2016 .

[24]  S. Olthof Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices , 2016 .

[25]  Robert P. H. Chang,et al.  Dopant‐Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells , 2016 .

[26]  M. Ko,et al.  Pyrite‐Based Bi‐Functional Layer for Long‐Term Stability and High‐Performance of Organo‐Lead Halide Perovskite Solar Cells , 2016 .

[27]  Mingkui Wang,et al.  F4TCNQ-doped DEPT-SC as hole transporting material for stable perovskite solar cells , 2016 .

[28]  Chunhui Huang,et al.  Solution processed inorganic V2Ox as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency , 2016, Nano Research.

[29]  Yiwang Chen,et al.  Versatile Molybdenum Isopropoxide for Efficient Mesoporous Perovskite Solar Cells: Simultaneously Optimized Morphology and Interfacial Engineering , 2016 .

[30]  Jin Jang,et al.  New Horizons for Perovskite Solar Cells Employing DNA-CTMA as the Hole-Transporting Material. , 2016, ChemSusChem.

[31]  T. Park,et al.  Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells , 2016 .

[32]  Hongwei Lei,et al.  Copper‐Doped Chromium Oxide Hole‐Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement , 2016 .

[33]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[34]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[35]  Yaoguang Rong,et al.  Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells. , 2016, Chemical communications.

[36]  G. Boschloo,et al.  Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material. , 2016, ACS nano.

[37]  Y. Ohno,et al.  Highly stable perovskite solar cells with an all-carbon hole transport layer. , 2016, Nanoscale.

[38]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[39]  Lixin Xiao,et al.  High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. , 2016, Nanoscale.

[40]  J. Bisquert,et al.  Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells , 2016 .

[41]  Kai Zhu,et al.  Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection , 2016 .

[42]  Juan Bisquert,et al.  Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements , 2016 .

[43]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[44]  L. Cinà,et al.  Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells , 2016 .

[45]  C. Zhong,et al.  Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering , 2016, Science Advances.

[46]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[47]  T. Shi,et al.  Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. , 2016, Nanoscale.

[48]  Sudip Kumar Batabyal,et al.  Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. , 2016, Nanoscale.

[49]  A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. , 2016, Nanoscale.

[50]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[51]  F. Hui,et al.  Dopant‐Free Spiro‐Triphenylamine/Fluorene as Hole‐Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability , 2016 .

[52]  Yiwang Chen,et al.  Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells , 2016 .

[53]  Nakita K. Noel,et al.  Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[54]  S. Chang,et al.  A perovskite cell with a record-high-V(oc) of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer. , 2016, Nanoscale.

[55]  Ashraf Uddin,et al.  Open circuit voltage of organic solar cells: an in-depth review , 2016 .

[56]  Henry J. Snaith,et al.  Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification , 2016 .

[57]  Zhenhua Yu,et al.  Cubic: Column composite structure (NH2CH=NH2)x(CH3NH3)1-xPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability , 2016 .

[58]  V. Ahmadi,et al.  Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[59]  Licheng Sun,et al.  Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode , 2016 .

[60]  Meicheng Li,et al.  Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface , 2016 .

[61]  Lei Meng,et al.  Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. , 2016, Accounts of chemical research.

[62]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[63]  A. Pal,et al.  Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures , 2016 .

[64]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[65]  Da-Young Lee,et al.  Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. , 2016, Nanoscale.

[66]  Hongxia Wang,et al.  Progress in research on the stability of organometal perovskite solar cells , 2016 .

[67]  W. Tress Maximum Efficiency and Open-Circuit Voltage of Perovskite Solar Cells , 2016 .

[68]  Sung‐Ho Jin,et al.  Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long‐Term Stability , 2016, Advanced materials.

[69]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[70]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[71]  Haibo Bi,et al.  Influence of the additives in poly(3-hexylthiophene) hole transport layer on the performance of perovskite solar cells , 2015 .

[72]  M. Grätzel,et al.  Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[73]  Chien-Yu Chen,et al.  Perovskite Photovoltaics for Dim‐Light Applications , 2015 .

[74]  W. Que,et al.  High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer , 2015 .

[75]  Shihe Yang,et al.  Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor , 2015 .

[76]  G. Fang,et al.  Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers , 2015 .

[77]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[78]  Aldo Di Carlo,et al.  Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO4 laser patterned rutile TiO2 nanorods , 2015, Nanotechnology.

[79]  J. Y. Kim,et al.  Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH3NH3PbI3/HTM interface , 2015 .

[80]  Yi-Bing Cheng,et al.  Encapsulation for improving the lifetime of flexible perovskite solar cells , 2015 .

[81]  Wenlian Li,et al.  Hole transporting material-free and annealing-free thermal evaporated planar perovskite solar cells with an ultra-thin CH3NH3PbI3−XClX layer , 2015 .

[82]  Yanhong Luo,et al.  Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells , 2015 .

[83]  Liming Ding,et al.  Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. , 2015, Small.

[84]  Kenji Kakiage,et al.  Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. , 2015, Chemical communications.

[85]  S. Zakeeruddin,et al.  A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells , 2015 .

[86]  R. Munir,et al.  Solution-processed inorganic copper( i ) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells , 2015 .

[87]  Po-Shen Shen,et al.  Novel spiro-based hole transporting materials for efficient perovskite solar cells. , 2015, Chemical communications.

[88]  Min Ho Lee,et al.  Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells , 2015 .

[89]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[90]  F. Alharbi,et al.  Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells , 2015 .

[91]  Thomas M. Brown,et al.  Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability , 2015 .

[92]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[93]  Sang Il Seok,et al.  Effective Electron Blocking of CuPC‐Doped Spiro‐OMeTAD for Highly Efficient Inorganic–Organic Hybrid Perovskite Solar Cells , 2015 .

[94]  Yan Shen,et al.  Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture , 2015 .

[95]  Meng Qiu,et al.  Simple planar perovskite solar cells with a dopant-free benzodithiophene conjugated polymer as hole transporting material , 2015 .

[96]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[97]  V. Ahmadi,et al.  New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[98]  Si-Min Dai,et al.  Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells , 2015 .

[99]  Yanhong Luo,et al.  Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer , 2015 .

[100]  C. Brabec,et al.  Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer. , 2015, ACS applied materials & interfaces.

[101]  Dunwei Wang,et al.  Single-Crystalline Thin Films for Studying Intrinsic Properties of BiFeO3–SrTiO3 Solid Solution Photoelectrodes in Solar Energy Conversion , 2015 .

[102]  Aram Amassian,et al.  16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays , 2015 .

[103]  G. Shi,et al.  A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells , 2015 .

[104]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[105]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[106]  N. Zheng,et al.  Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[107]  S. Zakeeruddin,et al.  A–D–A-type S,N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells , 2015 .

[108]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[109]  Y. Huang,et al.  Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[110]  Ning Wang,et al.  Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells , 2015 .

[111]  Aldo Di Carlo,et al.  Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. , 2015, ACS nano.

[112]  S. Ito,et al.  Light stability tests of methylammonium and formamidinium Pb-halide perovskites for solar cell applications , 2015 .

[113]  M. Ko,et al.  Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. , 2015, ACS applied materials & interfaces.

[114]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[115]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[116]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[117]  M. Grätzel,et al.  A simple spiro-type hole transporting material for efficient perovskite solar cells , 2015 .

[118]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[119]  Qingwen Li,et al.  Wearable Double‐Twisted Fibrous Perovskite Solar Cell , 2015, Advanced materials.

[120]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[121]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[122]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[123]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[124]  Miaoqiang Lyu,et al.  Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. , 2015, Chemical communications.

[125]  M. Grätzel,et al.  A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells , 2015 .

[126]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[127]  Francesco Di Giacomo,et al.  Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells , 2015 .

[128]  Zhiwei Li,et al.  Stable Perovskite Solar Cells Based on WO3 Nanocrystals as Hole Transport Layer , 2015 .

[129]  Yang Yang,et al.  A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells , 2015 .

[130]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[131]  N. Zheng,et al.  Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. , 2015, Nanoscale.

[132]  Bei Chu,et al.  Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. , 2015, Nanoscale.

[133]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[134]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[135]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[136]  Yiming Liu,et al.  Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design , 2015 .

[137]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[138]  K. Cao,et al.  Efficient mesoscopic perovskite solar cells based on the CH3NH3PbI2Br light absorber , 2015 .

[139]  H. Han,et al.  The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells , 2015 .

[140]  H. Han,et al.  The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell , 2015 .

[141]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[142]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[143]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[144]  Yanhong Luo,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)‐Modified P3HT Hole‐Transporting Material , 2015 .

[145]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[146]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[147]  Qamar Wali,et al.  Mesoporous titania–vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells , 2015, Nanotechnology.

[148]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[149]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[150]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[151]  Xudong Yang,et al.  Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells , 2015 .

[152]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[153]  Min-Soo Choi,et al.  Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers , 2015 .

[154]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[155]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[156]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[157]  J. Bell,et al.  An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells , 2015 .

[158]  Andrew R. Kitahara,et al.  High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer , 2015 .

[159]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[160]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[161]  Yuzong Gu,et al.  The essential role of the poly(3-hexylthiophene) hole transport layer in perovskite solar cells , 2015 .

[162]  H. Imahori,et al.  Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. , 2015, Dalton transactions.

[163]  Y. Qi,et al.  Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films , 2015 .

[164]  S. Rutter,et al.  A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells , 2015 .

[165]  Jiang Tang,et al.  PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells , 2015 .

[166]  G. Sharma,et al.  CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material , 2015 .

[167]  Dimitrios Raptis,et al.  Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material , 2015 .

[168]  K. Chong,et al.  Structural and Electrochemical Characteristics of Graphene Nanosheets as Supercapacitor Electrodes , 2015 .

[169]  Gang Li,et al.  One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive , 2015 .

[170]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[171]  Yanhong Luo,et al.  Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers , 2015, Nano Research.

[172]  M. Grätzel,et al.  Meso-substituted porphyrins for dye-sensitized solar cells. , 2014, Chemical reviews.

[173]  Feng Huang,et al.  CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide. , 2014, ACS applied materials & interfaces.

[174]  H. Ågren,et al.  AgTFSI as p-type dopant for efficient and stable solid-state dye-sensitized and perovskite solar cells. , 2014, ChemSusChem.

[175]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[176]  M. Grätzel,et al.  Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. , 2014, ChemSusChem.

[177]  Rajan Jose,et al.  A perspective on the production of dye-sensitized solar modules , 2014 .

[178]  Guangda Niu,et al.  Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells , 2014 .

[179]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[180]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[181]  Q. Meng,et al.  Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. , 2014, Chemical communications.

[182]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[183]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[184]  M. Nazeeruddin,et al.  Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell , 2014 .

[185]  M. Hong,et al.  14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials. , 2014, Chemical communications.

[186]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[187]  Andrew R. Kitahara,et al.  Defect density and dielectric constant in perovskite solar cells , 2014 .

[188]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[189]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[190]  J. Heo,et al.  CH3NH3PbI3/poly‐3‐hexylthiophen perovskite mesoscopic solar cells: Performance enhancement by Li‐assisted hole conduction , 2014 .

[191]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[192]  Tae‐Woo Lee,et al.  Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self‐Organized Polymeric Hole Extraction Layers with High Work Function , 2014, Advanced materials.

[193]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[194]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[195]  Shuzi Hayase,et al.  Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. , 2014, Journal of the American Chemical Society.

[196]  J. Jang,et al.  Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells , 2014 .

[197]  Chun-Guey Wu,et al.  Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process , 2014 .

[198]  Weifeng Zhang,et al.  Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions , 2014, Nanoscale Research Letters.

[199]  Bo Qu,et al.  A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. , 2014, Chemical communications.

[200]  M. Nazeeruddin,et al.  Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors. , 2014, Chemistry.

[201]  Zhuang Liu,et al.  Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. , 2014, Nanoscale.

[202]  M. Nazeeruddin,et al.  Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells. , 2014, Chemical communications.

[203]  F. Rosei,et al.  Size Dependence of Temperature-Related Optical Properties of PbS and PbS/CdS Core/Shell Quantum Dots , 2014 .

[204]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[205]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[206]  Liming Ding,et al.  An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. , 2014, Nanoscale.

[207]  Yunlong Guo,et al.  Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer , 2014 .

[208]  G. Boschloo,et al.  Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells. , 2014, ChemSusChem.

[209]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[210]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[211]  Rui Liu,et al.  Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes , 2014 .

[212]  Yong Qiu,et al.  Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination , 2014 .

[213]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[214]  Ming-Hsien Li,et al.  Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[215]  E. Barea,et al.  New iridium complex as additive to the spiro-OMeTAD in perovskite solar cells with enhanced stability , 2014 .

[216]  Oscar Miguel,et al.  Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact , 2014 .

[217]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[218]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[219]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[220]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[221]  L. Etgar,et al.  A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response , 2014 .

[222]  Jin Young Kim,et al.  Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .

[223]  S. Mhaisalkar,et al.  Cobalt dopant with deep redox potential for organometal halide hybrid solar cells. , 2014, ChemSusChem.

[224]  Tomas Leijtens,et al.  Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. , 2014, ACS nano.

[225]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[226]  Wei Chen,et al.  Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells , 2014 .

[227]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[228]  M. Nazeeruddin,et al.  The role of the hole-transport layer in perovskite solar cells - reducing recombination and increasing absorption , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[229]  M. Grätzel,et al.  Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. , 2014, Journal of the American Chemical Society.

[230]  C. Soci,et al.  Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells , 2014 .

[231]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[232]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[233]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[234]  Wenping Yin,et al.  Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots. , 2014, The journal of physical chemistry letters.

[235]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[236]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[237]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[238]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[239]  Gary Hodes,et al.  Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[240]  Kai Zhu,et al.  Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells , 2014 .

[241]  Zulkeflee Khalidin,et al.  Charge transport through split photoelectrodes in dye-sensitized solar cells , 2014 .

[242]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[243]  T. Ma,et al.  A dual functional additive for the HTM layer in perovskite solar cells. , 2014, Chemical communications.

[244]  P. Lund,et al.  Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[245]  M. Grätzel,et al.  A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. , 2014, Angewandte Chemie.

[246]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[247]  Aldo Di Carlo,et al.  High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer , 2014 .

[248]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[249]  Philip Schulz,et al.  Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films. , 2014, The journal of physical chemistry letters.

[250]  Jean-Pierre Wolf,et al.  Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. , 2014, Journal of the American Chemical Society.

[251]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[252]  Tzung-Fang Guo,et al.  High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. , 2014, Physical chemistry chemical physics : PCCP.

[253]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[254]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[255]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[256]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[257]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[258]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[259]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[260]  David Cahen,et al.  Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. , 2014, The journal of physical chemistry letters.

[261]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[262]  Y. Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[263]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[264]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[265]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[266]  S. Ito,et al.  ff ects of Surface Blocking Layer of Sb 2 S 3 on Nanocrystalline TiO 2 for CH 3 NH 3 PbI 3 Perovskite Solar Cells , 2014 .

[267]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[268]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[269]  S. Krischok,et al.  Multiple stress degradation analysis of the active layer in organic photovoltaics , 2014 .

[270]  Mohammad Khaja Nazeeruddin,et al.  Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. , 2013, Journal of the American Chemical Society.

[271]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[272]  Anton Van der Ven,et al.  Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors , 2013 .

[273]  R. Gordon,et al.  Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells , 2013 .

[274]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[275]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[276]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[277]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[278]  A. Helmy,et al.  Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing , 2013 .

[279]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[280]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[281]  Jeffrey A. Christians,et al.  Trap and transfer. two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells. , 2013, ACS nano.

[282]  Zhipeng Huo,et al.  Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. , 2013, Chemical communications.

[283]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[284]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[285]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[286]  A. Kahn,et al.  Gap states in pentacene thin film induced by inert gas exposure. , 2013, Physical review letters.

[287]  John R. Reynolds,et al.  Solution‐Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells , 2013 .

[288]  Taiho Park,et al.  Charge Density Dependent Mobility of Organic Hole‐Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye‐Sensitized and Organic Solar Cells , 2013, Advanced materials.

[289]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[290]  Andrés J. García,et al.  Investigating the Influence of Interfacial Contact Properties on Open Circuit Voltages in Organic Photovoltaic Performance: Work Function Versus Selectivity , 2013 .

[291]  S. Y. Chiam,et al.  Enhanced Extraction Rates through Gap States of Molybdenum Oxide Anode Buffer , 2013 .

[292]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[293]  A. Amassian,et al.  Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. , 2013, Chemical communications.

[294]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[295]  Seeram Ramakrishna,et al.  Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer. , 2013, Physical chemistry chemical physics : PCCP.

[296]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[297]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[298]  A. Amassian,et al.  Hole‐Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper(I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature , 2013, Advanced materials.

[299]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[300]  Mohammad Istiaque Hossain,et al.  Recent advances in alternative material photovoltaics , 2013 .

[301]  J. Teuscher,et al.  Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[302]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[303]  Jaehoon Jeong,et al.  ON THE STABILITY OF POLYMER SOLAR CELLS , 2012 .

[304]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[305]  Gregory C. Welch,et al.  Improvement of Interfacial Contacts for New Small‐Molecule Bulk‐Heterojunction Organic Photovoltaics , 2012, Advanced materials.

[306]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[307]  Choong-Sun Lim,et al.  Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. , 2012, Nano letters.

[308]  J. Bloking,et al.  Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. , 2012, ACS nano.

[309]  R. Dhakal,et al.  AlSb Compound Semiconductor as Absorber Layer in Thin Film Solar Cells , 2011 .

[310]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[311]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[312]  Lionel Hirsch,et al.  P3HT:PCBM, Best Seller in Polymer Photovoltaic Research , 2011, Advanced materials.

[313]  Guanghui Liu,et al.  Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode , 2011 .

[314]  F. Fabregat‐Santiago,et al.  Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[315]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[316]  Peng Wang,et al.  An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. , 2011, Nano letters.

[317]  J. Qin,et al.  Star-Shaped Oligotriarylamines with Planarized Triphenylamine Core: Solution-Processable, High-Tg Hole-Injecting and Hole-Transporting Materials for Organic Light-Emitting Devices† , 2011 .

[318]  Suren A. Gevorgyan,et al.  Degradation patterns in water and oxygen of an inverted polymer solar cell. , 2010, Journal of the American Chemical Society.

[319]  H. Snaith,et al.  Efficient Single‐Layer Polymer Light‐Emitting Diodes , 2010, Advanced materials.

[320]  G. Namkoong,et al.  Design of organic tandem solar cells using PCPDTBT:PC61BM and P3HT:PC71BM , 2010 .

[321]  Nelson E. Coates,et al.  Solution‐Processed Inorganic Solar Cell Based on in situ Synthesis and Film Deposition of CuInS2 Nanocrystals. , 2010 .

[322]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[323]  G. Larramona,et al.  Light Soaking and Gas Effect on Nanocrystalline TiO2/Sb2S3/CuSCN Photovoltaic Cells following Extremely Thin Absorber Concept , 2010 .

[324]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[325]  Ho‐Hsiu Chou,et al.  Triptycene derivatives as high-Tg host materials for various electrophosphorescent devices , 2010 .

[326]  U. Bach,et al.  Highly efficient photocathodes for dye-sensitized tandem solar cells. , 2010, Nature materials.

[327]  Michael Grätzel,et al.  Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance , 2009 .

[328]  Anders Hagfeldt,et al.  A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. , 2009, Angewandte Chemie.

[329]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[330]  M. Leclerc,et al.  A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications , 2009 .

[331]  Juan Bisquert,et al.  Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. , 2009, Journal of the American Chemical Society.

[332]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[333]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[334]  Robert P. H. Chang,et al.  p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells , 2008, Proceedings of the National Academy of Sciences.

[335]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[336]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[337]  I. Swainson,et al.  Pressure Response of an Organic−Inorganic Perovskite: Methylammonium Lead Bromide , 2007 .

[338]  Michael Grätzel,et al.  Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells , 2006 .

[339]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[340]  Liduo Wang,et al.  Review of recent progress in solid-state dye-sensitized solar cells , 2006 .

[341]  Mehul C. Raval,et al.  solar cells , 2006 .

[342]  Tae-Woo Lee,et al.  Hole-injecting conducting-polymer compositions for highly efficient and stable organic light-emitting diodes , 2005 .

[343]  M. Umeno,et al.  Copper iodide thin films as a p-type electrical conductivity in dye-sensitized p-CuI|Dye|n-TiO2 heterojunction solid state solar cells , 2004 .

[344]  K. Tennakone,et al.  Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector , 2003 .

[345]  Wolfgang Brütting,et al.  Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells , 2001 .

[346]  Daniel T. Schwartz,et al.  Electrodeposited Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics , 2000 .

[347]  M. Carter,et al.  Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties , 1998 .

[348]  Michael Grätzel,et al.  Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder , 1996 .

[349]  B. Tell,et al.  Electrical Properties, Optical Properties, and Band Structure of CuGaS 2 and CuInS 2 , 1971 .

[350]  Hideo Watanabe,et al.  Electrical Properties of CuI Thin Films , 1971 .

[351]  L. H. Oliver,et al.  One Step On , 1967, Nature.