A neutral network for identifying the out-of-control signals of MEWMA control charts

Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-of-control signal of a multivariate chart. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.