Sparser Johnson-Lindenstrauss Transforms
暂无分享,去创建一个
[1] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[2] F. T. Wright,et al. A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .
[3] Larry Carter,et al. Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..
[4] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[5] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[6] Peter Frankl,et al. The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.
[7] Piotr Indyk,et al. Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.
[8] Russ Bubley,et al. Randomized algorithms , 1995, CSUR.
[9] Piotr Indyk,et al. Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[10] Moses Charikar,et al. Finding frequent items in data streams , 2002, Theor. Comput. Sci..
[11] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[12] Noga Alon,et al. Problems and results in extremal combinatorics--I , 2003, Discret. Math..
[13] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[14] Sanjoy Dasgupta,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.
[15] Mikkel Thorup,et al. Tabulation based 4-universal hashing with applications to second moment estimation , 2004, SODA '04.
[16] Santosh S. Vempala,et al. The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
[17] Santosh S. Vempala,et al. An algorithmic theory of learning: Robust concepts and random projection , 1999, Machine Learning.
[18] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[19] Dan Suciu,et al. Journal of the ACM , 2006 .
[20] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[21] Jirí Matousek,et al. On variants of the Johnson–Lindenstrauss lemma , 2008, Random Struct. Algorithms.
[22] Nir Ailon,et al. Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes , 2008, SODA '08.
[23] Moni Naor,et al. Derandomized Constructions of k-Wise (Almost) Independent Permutations , 2005, Algorithmica.
[24] Kilian Q. Weinberger,et al. Feature hashing for large scale multitask learning , 2009, ICML '09.
[25] Bernard Chazelle,et al. The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..
[26] David P. Woodruff,et al. Numerical linear algebra in the streaming model , 2009, STOC '09.
[27] Anirban Dasgupta,et al. A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.
[28] Rafail Ostrovsky,et al. Rademacher Chaos, Random Eulerian Graphs and The Sparse Johnson-Lindenstrauss Transform , 2010, ArXiv.
[29] Daniel M. Kane,et al. A Derandomized Sparse Johnson-Lindenstrauss Transform , 2010, Electron. Colloquium Comput. Complex..
[30] Jan Vyb'iral. A variant of the Johnson-Lindenstrauss lemma for circulant matrices , 2010, 1002.2847.
[31] Raghu Meka. Almost Optimal Explicit Johnson-Lindenstrauss Transformations , 2010, ArXiv.
[32] Daniel M. Kane,et al. A Sparser Johnson-Lindenstrauss Transform , 2010, ArXiv.
[33] Rachel Ward,et al. New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..
[34] Aicke Hinrichs,et al. Johnson‐Lindenstrauss lemma for circulant matrices* * , 2010, Random Struct. Algorithms.
[35] Daniel M. Kane,et al. Almost Optimal Explicit Johnson-Lindenstrauss Families , 2011, APPROX-RANDOM.
[36] David P. Woodruff,et al. Fast moment estimation in data streams in optimal space , 2010, STOC '11.
[37] Nir Ailon,et al. An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.
[38] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2012, STOC '13.
[39] Piotr Indyk,et al. Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality , 2012, Theory Comput..
[40] Mikkel Thorup,et al. Tabulation-Based 5-Independent Hashing with Applications to Linear Probing and Second Moment Estimation , 2012, SIAM J. Comput..
[41] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2013, STOC '13.
[42] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[43] David P. Woodruff,et al. Optimal Bounds for Johnson-Lindenstrauss Transforms and Streaming Problems with Subconstant Error , 2011, TALG.
[44] Huy L. Nguyen,et al. Sparsity lower bounds for dimensionality reducing maps , 2012, STOC '13.
[45] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.