暂无分享,去创建一个
Enrico Formenti | Alberto Dennunzio | Julien Cervelle | Julien Provillard | E. Formenti | J. Cervelle | A. Dennunzio | Julien Provillard
[1] Ludwig Staiger,et al. Finite Acceptance of Infinite Words , 1997, Theor. Comput. Sci..
[2] Lawrence H. Landweber,et al. Decision problems forω-automata , 1969, Mathematical systems theory.
[3] Krzysztof R. Apt,et al. Lectures in Game Theory for Computer Scientists , 2011 .
[4] David E. Muller,et al. Infinite sequences and finite machines , 1963, SWCT.
[5] Nivat G. Päun,et al. Handbook of Formal Languages , 2013, Springer Berlin Heidelberg.
[6] Wolfgang Thomas,et al. Languages vs. ω-Languages in Regular Infinite Games , 2011, Developments in Language Theory.
[7] J. R. Büchi. Symposium on Decision Problems: On a Decision Method in Restricted Second Order Arithmetic , 1966 .
[8] Moshe Y. Vardi. The Büchi Complementation Saga , 2007, STACS.
[9] J. Hartmanis. Sets of Numbers Defined by Finite Automata , 1967 .
[10] Enrico Formenti,et al. Acceptance Conditions for ω-Languages , 2012, Developments in Language Theory.
[11] Orna Kupferman,et al. From complementation to certification , 2005, Theor. Comput. Sci..
[12] Jean-Eric Pin,et al. Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.
[13] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[14] Tetsuo Moriya,et al. Accepting Conditions for Automata on omega-Languages , 1988, Theor. Comput. Sci..
[15] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[16] Ludwig Staiger,et al. Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen , 1974, J. Inf. Process. Cybern..