Effect of Fe content on structure and mechanical properties of a medium - entropy Fex(CoNi)100-xCr9.5C0.5 (x=60 and 65) alloys after cold rolling and annealing

[1]  Y. Nian,et al.  Strengthening mechanisms in high entropy alloys: A review , 2022, Materials Today Communications.

[2]  N. Stepanov,et al.  Effect of Nitrogen Doping on the Structure and Mechanical Properties of the Fe40Mn40Cr10Co10 High-Entropy Alloy , 2022, Metals.

[3]  E. Astafurova,et al.  The way to improve strength and ductility of heavily carbon-alloyed high-entropy Fe20Mn20Cr20Ni20Co15C5 alloy , 2022, Materials Science and Engineering: A.

[4]  Hyoung-Seop Kim,et al.  A facile strengthening method by co-doping boron and nitrogen in CoCrFeMnNi high-entropy alloy , 2022, Materials Science and Engineering: A.

[5]  Yang Li,et al.  Revealing the deformation mechanisms of the heterogeneous structured CrMnFeCoNi high entropy alloy with ameliorated mechanical and corrosion resistance properties , 2022, Surface and Coatings Technology.

[6]  B. Gan,et al.  Revisiting MP35N and MP159: The route to ultra-strong Co–Cr–Ni medium entropy alloys , 2022, Intermetallics.

[7]  Hyoung-Seop Kim,et al.  Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures , 2022, Journal of Alloys and Compounds.

[8]  Ian Baker Interstitial Strengthening in f.c.c. Metals and Alloys , 2022, Advanced Powder Materials.

[9]  R. Arróyave,et al.  Entropy-Driven Melting Point Depression in fcc HEAs , 2022, SSRN Electronic Journal.

[10]  N. Stepanov,et al.  Outstanding cryogenic strength-ductility properties of a cold-rolled medium-entropy TRIP Fe65(CoNi)25Cr9·5C0.5 alloy , 2022, Materials Science and Engineering: A.

[11]  N. Stepanov,et al.  Effect of nitrogen on microstructure and mechanical properties of the CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing , 2021 .

[12]  E. Astafurova,et al.  Temperature Dependence of Mechanical Properties and Plastic Flow Behavior of Cast Multicomponent Alloys Fe20Cr20Mn20Ni20Co20-xCx (x = 0, 1, 3, 5) , 2021, Physical Mesomechanics.

[13]  Hyoung-Seop Kim,et al.  Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures , 2021 .

[14]  J. Gubicza,et al.  On prominent TRIP effect and non-basal slip in a TWIP high entropy alloy during high-pressure torsion processing , 2021, Materials Characterization.

[15]  N. Stepanov,et al.  Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures , 2020, Journal of Alloys and Compounds.

[16]  E. Astafurova,et al.  A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal–mechanical treatments , 2020 .

[17]  X. Ren,et al.  Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi high-entropy alloy by laser shock peening , 2020 .

[18]  Hyoung-Seop Kim,et al.  Towards ferrous medium-entropy alloys with low-cost and high-performance , 2020 .

[19]  C. Liu,et al.  High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins , 2020 .

[20]  Shilei Li,et al.  In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy , 2020 .

[21]  N. Stepanov,et al.  Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys , 2019, Journal of Alloys and Compounds.

[22]  Z. Zhang,et al.  Temperature dependence of the Hall–Petch relationship in CoCrFeMnNi high-entropy alloy , 2019, Journal of Alloys and Compounds.

[23]  Hyoung-Seop Kim,et al.  Fine tuning of tensile properties in CrCoNi medium entropy alloy through cold rolling and annealing , 2019, Intermetallics.

[24]  Sunghak Lee,et al.  Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation , 2019, Scripta Materialia.

[25]  D. Raabe,et al.  Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures , 2019, Materials Science and Engineering: A.

[26]  Yusheng Li,et al.  Impact property of high-strength 316L stainless steel with heterostructures , 2019, Materials Science and Engineering: A.

[27]  N. Tsuji,et al.  Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy , 2019, Journal of Alloys and Compounds.

[28]  E. George,et al.  Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures , 2019, Acta Materialia.

[29]  Zhiming Li Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior , 2019, Acta Materialia.

[30]  D. Raabe,et al.  Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy , 2019, Acta Materialia.

[31]  A. Belyakov,et al.  Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy , 2019, Materials Science and Engineering: A.

[32]  J. Seol,et al.  Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures , 2018, Acta Materialia.

[33]  Hyoung-Seop Kim,et al.  Ultra-high tensile strength nanocrystalline CoCrNi equi-atomic medium entropy alloy processed by high-pressure torsion , 2018, Materials Science and Engineering: A.

[34]  N. Stepanov,et al.  Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling , 2017, Materials.

[35]  Ji-Jung Kai,et al.  Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy , 2017 .

[36]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[37]  Wei Guo,et al.  The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe 40.4 Ni 11.3 Mn 34.8 Al 7.5 Cr 6 high entropy alloys , 2017 .

[38]  N. Stepanov,et al.  Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy , 2017 .

[39]  Nikita Stepanov,et al.  Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys , 2016 .

[40]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[41]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[42]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[43]  D. C. Aken,et al.  Thermodynamic Driving Force of the γ → ε Transformation and Resulting MS Temperature in High-Mn Steels , 2016, Metallurgical and Materials Transactions A.

[44]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[45]  Robert O. Ritchie,et al.  Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi , 2015, Nature Communications.

[46]  C. Tasan,et al.  Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys , 2015 .

[47]  G. Pharr,et al.  Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures , 2014 .

[48]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[49]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[50]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[51]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[52]  Singon Kang,et al.  The effects of N on the microstructures and tensile properties of Fe-15Mn-0.6C-2Cr-xN twinning-induced plasticity steels , 2013 .

[53]  Dezhi Zhu,et al.  Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy , 2013 .

[54]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[55]  E. George,et al.  Tensile properties of high- and medium-entropy alloys , 2013 .

[56]  T. Nieh,et al.  Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy , 2013 .

[57]  H. Bei,et al.  Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys , 2013 .

[58]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[59]  J. Yeh,et al.  Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys , 2012 .

[60]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[61]  John C. Horwath,et al.  Magnetic and vibrational properties of high-entropy alloys , 2011 .

[62]  P. R. Rios,et al.  Martensite start temperature and the austenite grain-size , 2010 .

[63]  J. Tan,et al.  Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles , 2009 .

[64]  T. Furuhara,et al.  Relation between martensite morphology and volume change accompanying fcc to bcc martensitic transformation in Fe–Ni–Co alloys , 2006 .

[65]  C. Sinclair,et al.  A model for the grain size dependent work hardening of copper , 2006 .

[66]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[67]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[68]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[69]  T. Gladman,et al.  Precipitation hardening in metals , 1999 .

[70]  S. Takaki,et al.  Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15mass%Mn Alloy , 1993 .