Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques

In this paper we extend the hierarchical model reduction framework based on reduced basis techniques recently introduced in [M. Ohlberger and K. Smetana, SIAM J. Sci. Comput. 36 (2014) A714–A736] for the application to nonlinear partial differential equations. The major new ingredient to accomplish this goal is the introduction of the adaptive empirical projection method, which is an adaptive integration algorithm based on the (generalized) empirical interpolation method [M. Barrault, et al. , C. R. Math. Acad. Sci. Paris Series I 339 (2004) 667–672; Y. Maday and O. Mula, A generalized empirical interpolation method: Application of reduced basis techniques to data assimilation. In Analysis and Numerics of Partial Differential Equations . Vol. 4 of Springer INdAM Series . Springer Milan (2013) 221–235]. Different from other partitioning concepts for the empirical interpolation method we perform an adaptive decomposition of the spatial domain. We project both the variational formulation and the range of the nonlinear operator onto reduced spaces. Those reduced spaces combine the full dimensional (finite element) space in an identified dominant spatial direction and a reduction space or collateral basis space spanned by modal orthonormal basis functions in the transverse direction. Both the reduction and the collateral basis space are constructed in a highly nonlinear fashion by introducing a parametrized problem in the transverse direction and associated parametrized operator evaluations, and by applying reduced basis methods to select the bases from the corresponding snapshots. Rigorous a priori and a posteriori error estimators, which do not require additional regularity of the nonlinear operator are proven for the adaptive empirical projection method and then used to derive a rigorous a posteriori error estimator for the resulting hierarchical model reduction approach. Numerical experiments for an elliptic nonlinear diffusion equation demonstrate a fast convergence of the proposed dimensionally reduced approximation to the solution of the full-dimensional problem. Runtime experiments verify a close to linear scaling of the reduction method in the number of degrees of freedom used for the computations in the dominant direction.

[1]  Bernard Haasdonk,et al.  Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..

[2]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[3]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[4]  I. Babuska,et al.  On a dimensional reduction method. I. The optimal selection of basis functions , 1981 .

[5]  Bernard Haasdonk,et al.  Adaptive Reduced Basis Methods for Nonlinear Convection–Diffusion Equations , 2011 .

[6]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[7]  Danny C. Sorensen,et al.  A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems , 2014, SIAM J. Sci. Comput..

[8]  Ivo Babuška,et al.  On a dimensional reduction method. II. Some approximation-theoretic results , 1981 .

[9]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[10]  P. Raats,et al.  Dynamics of Fluids in Porous Media , 1973 .

[11]  Patrick Bar-Avi,et al.  Water Waves: The Mathematical Theory with Application , 1995 .

[12]  G. Talenti Inequalities in rearrangement invariant function spaces , 1994 .

[13]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[14]  Mario Ohlberger,et al.  A new hierarchical model reduction-reduced basis technique for advection-diffusion-reaction problems , 2012 .

[15]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[16]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[17]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems , 2007 .

[18]  Y. Maday,et al.  A generalized empirical interpolation method : application of reduced basis techniques to data assimilation , 2013, 1512.00683.

[19]  Christoph Ortner,et al.  A Posteriori Existence in Numerical Computations , 2009, SIAM J. Numer. Anal..

[20]  Timo Tonn Reduced-basis method (RBM) for non-affine elliptic parametrized PDEs - (motivated by optimization in hydromechanics) , 2012 .

[21]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[22]  Anthony T. Patera,et al.  A Posteriori Error Bounds for the Empirical Interpolation Method , 2010 .

[23]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[24]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[25]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[26]  Simona Perotto,et al.  Hierarchical Model Reduction for Advection-Diffusion-Reaction Problems , 2008 .

[27]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[28]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[29]  Michael Plum,et al.  Computer-assisted enclosure methods for elliptic differential equations , 2001 .

[30]  Claudio Canuto,et al.  A Posteriori Error Analysis of the Reduced Basis Method for Nonaffine Parametrized Nonlinear PDEs , 2009, SIAM J. Numer. Anal..

[31]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[32]  J. Rappaz,et al.  Numerical analysis for nonlinear and bifurcation problems , 1997 .

[33]  J. Peraire,et al.  A ‘best points’ interpolation method for efficient approximation of parametrized functions , 2008 .

[34]  Simona Perotto,et al.  Hierarchical Local Model Reduction for Elliptic Problems: A Domain Decomposition Approach , 2010, Multiscale Model. Simul..

[35]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[36]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[37]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[38]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[39]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[40]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[41]  Anthony Michel,et al.  A Finite Volume Scheme for Two-Phase Immiscible Flow in Porous Media , 2003, SIAM J. Numer. Anal..

[42]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[43]  Yvon Maday,et al.  A priori convergence of the Generalized Empirical Interpolation Method , 2013 .

[44]  Anthony T. Patera,et al.  The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation , 2015 .

[45]  Mario Ohlberger,et al.  A Dimensional Reduction Approach Based on the Application of Reduced Basis Methods in the Framework of Hierarchical Model Reduction , 2014, SIAM J. Sci. Comput..

[46]  Simona Perotto,et al.  Coupled Model and Grid Adaptivity in Hierarchical Reduction of Elliptic Problems , 2014, J. Sci. Comput..

[47]  Bernhard Wieland Implicit Partitioning Methods for Unknown Parameter Domains in the Context of the Reduced Basis Method , 2013 .

[48]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[49]  Adrien Leygue,et al.  Deim-based PGD for parametric nonlinear model order reduction , 2013 .

[50]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[51]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[52]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[53]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[54]  Roger Levin,et al.  Consistency. , 2020, Journal of the American Dental Association.

[55]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[56]  Alfio Quarteroni,et al.  Multiscale modelling of the circulatory system: a preliminary analysis , 1999 .

[57]  Mario Ohlberger,et al.  A new problem adapted hierarchical model reduction technique based on reduced basis methods and dimensional splitting , 2011 .

[58]  Tim B. Swartz,et al.  Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .

[59]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[60]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[61]  Danny C. Sorensen,et al.  A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..

[62]  Benjamin Stamm,et al.  Parameter multi‐domain ‘hp’ empirical interpolation , 2012 .

[63]  Karsten Urban,et al.  Affine Decompositions of Parametric Stochastic Processes for Application within Reduced Basis Methods , 2012 .

[64]  Oliver Sander,et al.  Unsaturated subsurface flow with surface water and nonlinear in- and outflow conditions , 2013, 1301.2488.

[65]  Finite dimensional approximation of nonlinear problems , 1980 .

[66]  Virginie Ehrlacher,et al.  Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.

[67]  Bernard Haasdonk,et al.  Adaptive Basis Enrichment for the Reduced Basis Method Applied to Finite Volume Schemes , 2008 .

[68]  Roger Grimshaw,et al.  Water Waves , 2021, Mathematics of Wave Propagation.

[69]  Bernhard Wieland Implicit partitioning methods for unknown parameter sets , 2015, Adv. Comput. Math..

[70]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[71]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[72]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[73]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[74]  Ivo Babuška,et al.  On a dimensional reduction method. III. A posteriori error estimation and an adaptive approach , 1981 .

[75]  Ronald DeVore,et al.  Greedy Algorithms for Reduced Bases in Banach Spaces , 2012, Constructive Approximation.

[76]  Hantaek Bae Navier-Stokes equations , 1992 .