A Universal Formula For Counting Cubic Surfaces

Using equivariant geometry, we find a universal formula that computes the number of times a general cubic surface arises in a family. As applications, we show that the PGL4 orbit closure of a generic cubic surface has degree 96120, and that a general cubic surface arises 42120 times as a hyperplane section of a general cubic 3-fold.

[1]  J. Alper On the local quotient structure of Artin stacks , 2009, 0904.2050.

[2]  G. N. Tyurina Resolution of singularities of plane deformations of double rational points , 1970 .

[3]  W. Fulton A note on residual intersections and the double point formula , 1978 .

[4]  P. Aluffi,et al.  Linear orbits of d-tuples of points in P1. , 1992, alg-geom/9205005.

[5]  J. Alper,et al.  A Luna étale slice theorem for algebraic stacks , 2015, 1504.06467.

[6]  Linear orbits of arbitrary plane curves. , 1999, math/9912092.

[7]  L. Kollros,et al.  An Attempt to determine the twenty-seven Lines upon a Surface of the third Order, and to divide such Surfaces into Species in Reference to the Reality of the Lines upon the Surface , 1953 .

[9]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .

[10]  Yoshiyuki Sakamaki Automorphism groups on normal singular cubic surfaces with no parameters , 2009 .

[11]  J. Miret,et al.  Geometry of complete cuspidal plane cubics , 1989 .

[12]  B. Hassett Moduli spaces of weighted pointed stable curves , 2002, math/0205009.

[13]  Patricio Gallardo,et al.  Moduli of cubic surfaces and their anticanonical divisors , 2016, Revista Matemática Complutense.

[14]  W. Graham,et al.  Equivariant intersection theory , 1996, alg-geom/9609018.

[15]  D. Gorenstein,et al.  Algebraic approximation of structures over complete local rings , 1969 .

[16]  B. Sturmfels,et al.  Twenty-Seven Questions about the Cubic Surface. , 2019, 1912.07347.

[17]  G. Kempf,et al.  Instability in invariant theory , 1978, 1807.02890.

[18]  David Mumford,et al.  Stability of projective varieties , 1977 .

[19]  A. Clebsch Ueber eine Transformation der homogenen Functionen dritter Ordnung mit vier Veränderlichen. , 1861 .

[20]  C. Wall,et al.  On the Classification of Cubic Surfaces , 1979 .

[21]  A. Clebsch Ueber die Knotenpunkte der Hesseschen Fläche, insbesondere bei Oberflächen dritter Ordnung. , 1861 .