Perfect State Transfer in Quantum Walks on Graphs

We provide a brief survey of perfect state transfer in quantum walks on finite graphs. The ability to transfer a quantum state from one part of a quantum computer to another is a key ingredient of scalable architectures. Transfer through structures that do not require locally varying dynamic control simplifies the design and hence reduces the opportunities for errors to arise. Continuous time walks quantum walks on highly structured graphs exhibit perfect state transfer for the complete graph of size 2, the path of length 3, and the cycle of size 4. From these, larger graphs can be constructed, and the use of edge weights widens this set considerably. Discrete-time quantum walks have more flexibility through exploiting the coin degrees of freedom, but with the disadvantage that local control of the coin is required if the degree of the vertices varies. The closely related property of periodicity (exact return to the starting state) is also mentioned.

[1]  Wasin So,et al.  Integral circulant graphs , 2006, Discret. Math..

[2]  C. Godsil,et al.  Quantum Networks on Cubelike Graphs , 2008, 0808.0510.

[3]  Mark Hillery,et al.  Modifying quantum walks: a scattering theory approach , 2007, 0705.4612.

[4]  P. Diaconis Group representations in probability and statistics , 1988 .

[5]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[6]  Barry C. Sanders,et al.  Complementarity and quantum walks , 2005 .

[7]  Alexander Russell,et al.  Quantum Walks on the Hypercube , 2002, RANDOM.

[8]  Eva Nosal,et al.  Eigenvalues of graphs , 1970 .

[9]  Sougato Bose,et al.  Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.

[10]  John Watrous,et al.  Continuous-Time Quantum Walks on the Symmetric Group , 2003, RANDOM-APPROX.

[11]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[12]  Simone Severini,et al.  Quantum state transfer through a qubit network with energy shifts and fluctuations , 2009, 0904.4510.

[13]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[14]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[15]  Viv Kendon,et al.  Quantum walks on general graphs , 2003, quant-ph/0306140.

[16]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[17]  R. Norton,et al.  On quantum perfect state transfer in weighted join graphs , 2009, 0909.0431.

[18]  L. Lovász Combinatorial problems and exercises , 1979 .

[19]  S. Huelga,et al.  State transfer in highly connected networks and a quantum Babinet principle , 2008, 0808.2261.

[20]  Julia Kempe,et al.  Quantum Random Walks Hit Exponentially Faster , 2002, ArXiv.

[21]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[22]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[23]  Michael Doob,et al.  Eigenvalues of graphs , 2004 .

[24]  Todd A. Brun,et al.  Quantum walks on quotient graphs , 2007 .

[25]  Milan B. Tasic,et al.  Perfect state transfer in integral circulant graphs , 2009, Appl. Math. Lett..

[26]  Simone Severini,et al.  Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics , 2007 .

[27]  Milan B. Tasic,et al.  Some classes of integral circulant graphs either allowing or not allowing perfect state transfer , 2009, Appl. Math. Lett..

[28]  Mark Hillery,et al.  Quantum walks on graphs and quantum scattering theory , 2004 .

[29]  Neil B. Lovett,et al.  Universal quantum computation using the discrete-time quantum walk , 2009, 0910.1024.

[30]  Marko D. Petković,et al.  Perfect state transfer in integral circulant graphs of non-square-free order , 2010 .

[31]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[32]  Julia Kempe,et al.  Discrete Quantum Walks Hit Exponentially Faster , 2005 .

[33]  Christino Tamon,et al.  NON-UNIFORM MIXING OF QUANTUM WALK ON CYCLES , 2007, 0708.2096.

[34]  G. J. Milburn,et al.  Implementing the quantum random walk , 2002 .

[35]  Simone Severini,et al.  COMMUNICATION IN XYZ ALL-TO-ALL QUANTUM NETWORKS WITH A MISSING LINK , 2008, 0808.0748.

[36]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[37]  Will Flanagan,et al.  Controlling discrete quantum walks: coins and initial states , 2003 .

[38]  David L Feder Perfect quantum state transfer with spinor bosons on weighted graphs. , 2006, Physical review letters.

[39]  Julia Kempe,et al.  Discrete Quantum Walks Hit Exponentially Faster , 2003, RANDOM-APPROX.

[40]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[41]  Matthew C. Russell,et al.  Perfect state transfer, integral circulants, and join of graphs , 2009, Quantum Inf. Comput..