Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry

Abstract Spectrally and spatially resolved interferometry has become a powerful tool for measurement of relative phase shift of broadband laser pulses propagating through any dispersive medium. Since under usual experimental conditions the relative phase shift is due to the medium only, the values of group delay, group delay dispersion and the third order dispersion provide the common ultrafast dispersion constants for the given material. In this paper a detailed description of the state of the art of spectrally and spatially resolved interferometry is given. With the consideration of the effects of wavelength calibration, bandwidth of the light source, electrical and optical noises, curved wavefronts, visibility of the fringes, and mechanical vibrations of the interferometer, we show that the accuracy for the determination of group delay dispersion and third order dispersion can be as high as 0.1 fs 2 and 2 fs 3 , respectively.

[1]  E. Giannelis,et al.  Single-shot temporal coherence measurements of random lasing media , 2007 .

[2]  Günter Steinmeyer,et al.  Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction. , 2006, Optics letters.

[3]  Wayne H. Knox,et al.  Dispersion measurements for femtosecond-pulse generation and applications , 1994 .

[4]  K. Osvay,et al.  Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar , 2007 .

[5]  W H Knox,et al.  Interferometric measurements of femtosecond group delay in optical components. , 1988, Optics letters.

[6]  I. Walmsley,et al.  The role of dispersion in ultrafast optics , 2001 .

[7]  K. Osvay,et al.  High-precision measurement of angular dispersion in a CPA laser , 2002 .

[8]  Eric Cormier,et al.  Self-referencing, spectrally, or spatially encoded spectral interferometry for the complete characterization of attosecond electromagnetic pulses. , 2005, Physical review letters.

[9]  J. Viénot,et al.  Holographic analysis of dispersive pupils in space-time optics. , 1981, Applied optics.

[10]  Yaron Silberberg,et al.  Real-time spatial–spectral interference measurements of ultrashort optical pulses , 1997 .

[11]  J. Klebniczki,et al.  Dispersion control of a pulse stretcher– compressor system with two-dimensional spectral interferometry , 2005 .

[12]  Rick Trebino,et al.  Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. , 2006, Optics express.

[13]  J. Jasapara,et al.  Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives. , 1999, Optics letters.

[14]  Ian A Walmsley,et al.  Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses. , 2002, Optics letters.

[15]  B. James,et al.  The use of Fourier transform techniques for the analysis of hook interferograms , 1995 .

[16]  Zsolt Bor,et al.  On the formation of white-light interference fringes , 1998 .

[17]  K R Wilson,et al.  Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification. , 1996, Optics letters.

[18]  Rafael Escalona,et al.  The stationary phase in spectrally resolved white-light interferometry as a refractometry tool , 2003 .

[19]  Ian A Walmsley,et al.  Interferometric technique for measuring broadband ultrashort pulses at the sampling limit. , 2005, Optics letters.

[20]  K. Misawa,et al.  Femtosecond Sagnac interferometer for phase spectroscopy. , 1995, Optics letters.

[21]  Manuel Joffre,et al.  Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy , 1995 .

[22]  Günter Steinmeyer,et al.  Bandwidth-independent linear method for detection of the carrier-envelope offset phase. , 2007, Optics letters.

[23]  Poppe,et al.  Controlling the phase evolution of few-cycle light pulses , 2000, Physical review letters.

[24]  Alain Cornet,et al.  Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses , 2005 .

[25]  Hirokazu Matsumoto,et al.  Direct measurement of the group refractive index of air with interferometry between adjacent femtosecond pulses. , 2002, Applied optics.

[26]  A Poppe,et al.  Route to phase control of ultrashort light pulses. , 1996, Optics letters.

[27]  Christophe Dorrer,et al.  Influence of the calibration of the detector on spectral interferometry , 1999 .

[28]  Rafael Escalona,et al.  Double phase modulation in the hybrid spatial–chromatic domain as a refractometry tool , 2000 .

[29]  L. Puccianti,et al.  Dispersione anomala della ossiemoglobina , 1901 .

[30]  I. Walmsley,et al.  Direct space time-characterization of the electric fields of ultrashort optical pulses. , 2002, Optics letters.

[31]  Yaron Silberberg,et al.  White light dispersion measurements by one- and two-dimensional spectral interference , 1997 .

[32]  Jürgen Bauer,et al.  Die Dispersion des Phasensprungs bei der Lichtreflexion an dünnen Metallschichten , 1934 .

[33]  K. Osvay,et al.  Measurement of non-compensated angular dispersion and the subsequent temporal lengthening of femtosecond pulses in a CPA laser , 2005 .

[34]  Jeffrey A. Squier,et al.  Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems , 1997 .

[35]  G. Szabó,et al.  Group refractive index measurement by Michelson interferometer , 1990 .

[36]  R. Szipöcs,et al.  Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry. , 1995, Optics letters.

[37]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale , 1996 .

[38]  C. Dorrer,et al.  Spectral resolution and sampling issues in Fourier-transform spectral interferometry , 2000 .

[39]  R. Trebino,et al.  Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry. , 2006, Optics letters.

[40]  T. Kobayashi,et al.  Adaptive shaping of two-cycle visible pulses using a flexible mirror , 2002 .

[41]  J C Viénot,et al.  Space and time variables in optics and holography: recent experimental aspects. , 1977, Applied optics.

[42]  Karoly Osvay,et al.  High order dispersion control for femtosecond CPA lasers , 2007 .

[43]  U. Keller,et al.  All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources. , 1995, Optics letters.

[44]  P. E. Ciddor,et al.  Phase Dispersion in Multilayer Films , 1960 .

[45]  J. Squier,et al.  Development of a femtosecond micromachining workstation by use of spectral interferometry. , 2005, Optics letters.

[46]  B. Lemoff,et al.  Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses. , 1993, Optics letters.

[47]  J. Squier,et al.  Complete characterization of a spatiotemporal pulse shaper with two-dimensional Fourier transform spectral interferometry. , 2007, Optics letters.

[48]  Nadia Belabas,et al.  Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers , 2000 .