Using imaging and genetics in zebrafish to study developing spinal circuits in vivo

Imaging and molecular approaches are perfectly suited to young, transparent zebrafish (Danio rerio), where they have allowed novel functional studies of neural circuits and their links to behavior. Here, we review cutting‐edge optical and genetic techniques used to dissect neural circuits in vivo and discuss their application to future studies of developing spinal circuits using living zebrafish. We anticipate that these experiments will reveal general principles governing the assembly of neural circuits that control movements. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008

[1]  J. White,et al.  Sniffing controls an adaptive filter of sensory input to the olfactory bulb , 2007, Nature Neuroscience.

[2]  D A Kane,et al.  Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. , 1996, Development.

[3]  J. Eisen,et al.  Headwaters of the zebrafish — emergence of a new model vertebrate , 2002, Nature Reviews Genetics.

[4]  E. Gahtan,et al.  Probing neural circuits in the zebrafish: a suite of optical techniques. , 2003, Methods.

[5]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[6]  K. Sillar,et al.  Development and Aminergic Neuromodulation of a Spinal Locomotor Network Controlling Swimming in Xenopus Larvae a , 1998, Annals of the New York Academy of Sciences.

[7]  E. Brustein,et al.  Development of the locomotor network in zebrafish , 2002, Progress in Neurobiology.

[8]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[9]  Herwig Baier,et al.  Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor , 2007, Neuron.

[10]  JoAnn Buchanan,et al.  Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo , 2000, Nature Neuroscience.

[11]  K. Sillar,et al.  Developmental segregation of spinal networks driving axial‐ and hindlimb‐based locomotion in metamorphosing Xenopus laevis , 2004, The Journal of physiology.

[12]  Herwig Baier,et al.  Visuomotor Behaviors in Larval Zebrafish after GFP-Guided Laser Ablation of the Optic Tectum , 2003, The Journal of Neuroscience.

[13]  Hiromi Hirata,et al.  accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1 , 2004, Development.

[14]  J. Y. Kuwada,et al.  Cell recognition by neuronal growth cones in a simple vertebrate embryo , 1986, Science.

[15]  Michael Schaefer,et al.  Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish , 2004, The Journal of comparative neurology.

[16]  Michael J. O'Donovan The origin of spontaneous activity in developing networks of the vertebrate nervous system , 1999, Current Opinion in Neurobiology.

[17]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[18]  A. Ribera,et al.  Developmental, molecular, and genetic dissection of INa in vivo in embryonic zebrafish sensory neurons. , 2005, Journal of neurophysiology.

[19]  David J. Anderson,et al.  Reversible Silencing of Neuronal Excitability in Behaving Mice by a Genetically Targeted, Ivermectin-Gated Cl− Channel , 2007, Neuron.

[20]  Melina E. Hale,et al.  Hox Gene Misexpression and Cell-Specific Lesions Reveal Functionality of Homeotically Transformed Neurons , 2004, The Journal of Neuroscience.

[21]  P. Drapeau,et al.  Time course of the development of motor behaviors in the zebrafish embryo. , 1998, Journal of neurobiology.

[22]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[23]  Herwig Baier,et al.  Regulation of axon growth in vivo by activity-based competition , 2005, Nature.

[24]  Nancy Hopkins,et al.  Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. , 2006, Trends in genetics : TIG.

[25]  Martyn Goulding,et al.  The formation of sensorimotor circuits , 2002, Current Opinion in Neurobiology.

[26]  M. Goulding,et al.  Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. , 1999, Development.

[27]  Alan Roberts,et al.  Primitive Roles for Inhibitory Interneurons in Developing Frog Spinal Cord , 2004, The Journal of Neuroscience.

[28]  P Z Myers,et al.  Spinal motoneurons of the larval zebrafish , 1985, The Journal of comparative neurology.

[29]  George V Lauder,et al.  Ontogeny of form and function: Locomotor morphology and drag in zebrafish (Danio rerio) , 2006, Journal of morphology.

[30]  K. Beam,et al.  Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-L-type Ca2+ channels expressed in dysgenic myotubes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Fetcho,et al.  Genes and photons: new avenues into the neuronal basis of behavior , 2004, Current Opinion in Neurobiology.

[32]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[33]  C. Niell,et al.  Functional Imaging Reveals Rapid Development of Visual Response Properties in the Zebrafish Tectum , 2005, Neuron.

[34]  J. Lichtman,et al.  In Vivo Time-Lapse Imaging of Synaptic Takeover Associated with Naturally Occurring Synapse Elimination , 2003, Neuron.

[35]  F. Clarac,et al.  The maturation of locomotor networks. , 2004, Progress in brain research.

[36]  M. Westerfield,et al.  Development and axonal outgrowth of identified motoneurons in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  O. Kiehn,et al.  Central Pattern Generators Deciphered by Molecular Genetics , 2004, Neuron.

[38]  Stephen W. Wilson,et al.  Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells , 1992, The Journal of comparative neurology.

[39]  J. Sanes,et al.  Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations , 2005, Development.

[40]  H Okamoto,et al.  High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. , 1997, Developmental biology.

[41]  Hiromi Hirata,et al.  Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Chalfie,et al.  Combinatorial Marking of Cells and Organelles with Reconstituted Fluorescent Proteins , 2004, Cell.

[43]  Melina E. Hale,et al.  Neural development of the zebrafish (Danio rerio) pectoral fin , 2007, The Journal of comparative neurology.

[44]  P. Drapeau,et al.  Glycine receptors regulate interneuron differentiation during spinal network development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[46]  D. O'Malley,et al.  Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. , 2000, The Journal of experimental biology.

[47]  G. Streisinger,et al.  Production of clones of homozygous diploid zebra fish (Brachydanio rerio) , 1981, Nature.

[48]  Mark A Masino,et al.  Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. , 2003, Journal of neurophysiology.

[49]  M. Bate,et al.  Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila , 2003, PLoS biology.

[50]  E. Callaway A molecular and genetic arsenal for systems neuroscience , 2005, Trends in Neurosciences.

[51]  Melina E. Hale,et al.  Grading Movement Strength by Changes in Firing Intensity versus Recruitment of Spinal Interneurons , 2007, Neuron.

[52]  J. Fetcho,et al.  Mutations in deadly seven/notch1a Reveal Developmental Plasticity in the Escape Response Circuit , 2003, The Journal of Neuroscience.

[53]  Michael J. O'Donovan,et al.  Primary Afferent Synapses on Developing and Adult Renshaw Cells , 2006, The Journal of Neuroscience.

[54]  E. Perl,et al.  Molecular and genetic features of a labeled class of spinal substantia gelatinosa neurons in a transgenic mouse , 2005, The Journal of comparative neurology.

[55]  M. Bate Development of motor behaviour , 1999, Current Opinion in Neurobiology.

[56]  S. Higashijima,et al.  Paralytic Zebrafish Lacking Acetylcholine Receptors Fail to Localize Rapsyn Clusters to the Synapse , 2001, The Journal of Neuroscience.

[57]  J. Y. Kuwada,et al.  Identification of spinal neurons in the embryonic and larval zebrafish , 1990, The Journal of comparative neurology.

[58]  A. Hughes The development of the primary sensory system in Xenopus laevis (Daudin). , 1957, Journal of anatomy.

[59]  Lara D Hutson,et al.  Wiring the zebrafish: axon guidance and synaptogenesis , 2002, Current Opinion in Neurobiology.

[60]  Hiroshi Nishimaru,et al.  Formation of the central pattern generator for locomotion in the rat and mouse , 2000, Brain Research Bulletin.

[61]  E. Thelen Rhythmical stereotypies in normal human infants , 1979, Animal Behaviour.

[62]  J. Y. Kuwada Development of the zebrafish nervous system: genetic analysis and manipulation , 1995, Current Opinion in Neurobiology.

[63]  M. Westerfield,et al.  Function of identified motoneurones and co‐ordination of primary and secondary motor systems during zebra fish swimming. , 1988, The Journal of physiology.

[64]  Javier Díez-García,et al.  Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors , 2006, Trends in Neurosciences.

[65]  H Okamoto,et al.  Visualization of Cranial Motor Neurons in Live Transgenic Zebrafish Expressing Green Fluorescent Protein Under the Control of the Islet-1 Promoter/Enhancer , 2000, The Journal of Neuroscience.

[66]  Monte Westerfield,et al.  The Zebrafish Information Network: the zebrafish model organism database , 2005, Nucleic Acids Res..

[67]  Josh L. Morgan,et al.  Laminar circuit formation in the vertebrate retina. , 2005, Progress in brain research.

[68]  K. Kawakami Transposon tools and methods in zebrafish , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[69]  Melina E. Hale,et al.  Swimming of larval zebrafish: fin–axis coordination and implications for function and neural control , 2004, Journal of Experimental Biology.

[70]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[71]  S. Higashijima,et al.  Translocation of CaM kinase II to synaptic sites in vivo , 2003, Nature Neuroscience.

[72]  L. Luo,et al.  Intrinsic Control of Precise Dendritic Targeting by an Ensemble of Transcription Factors , 2007, Current Biology.

[73]  Hiromi Hirata,et al.  The Zebrafish shocked Gene Encodes a Glycine Transporter and Is Essential for the Function of Early Neural Circuits in the CNS , 2005, The Journal of Neuroscience.

[74]  E. Jankowska Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals , 2001, The Journal of physiology.

[75]  Yukiko Kimura,et al.  alx, a Zebrafish Homolog of Chx10, Marks Ipsilateral Descending Excitatory Interneurons That Participate in the Regulation of Spinal Locomotor Circuits , 2006, The Journal of Neuroscience.

[76]  M. Sarras,et al.  Cre‐mediated site‐specific recombination in zebrafish embryos , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[77]  P. Wenner,et al.  Development of an inhibitory interneuronal circuit in the embryonic spinal cord. , 2005, Journal of neurophysiology.

[78]  Paul Brehm,et al.  Tethering Naturally Occurring Peptide Toxins for Cell-Autonomous Modulation of Ion Channels and Receptors In Vivo , 2004, Neuron.

[79]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[80]  Melina E. Hale,et al.  A confocal study of spinal interneurons in living larval zebrafish , 2001, The Journal of comparative neurology.

[81]  R. Moon,et al.  Reverse genetics in zebrafish. , 2000, Physiological genomics.

[82]  C. Nüsslein-Volhard,et al.  Fishing for genes controlling development. , 1996, Current opinion in genetics & development.

[83]  S. Higashijima,et al.  The Zebrafish Motility Mutant twitch once Reveals New Roles for Rapsyn in Synaptic Function , 2002, The Journal of Neuroscience.

[84]  Richard Axel,et al.  Spontaneous Neural Activity Is Required for the Establishment and Maintenance of the Olfactory Sensory Map , 2004, Neuron.

[85]  Herwig Baier,et al.  Visual Prey Capture in Larval Zebrafish Is Controlled by Identified Reticulospinal Neurons Downstream of the Tectum , 2005, The Journal of Neuroscience.

[86]  E. Callaway,et al.  V1 spinal neurons regulate the speed of vertebrate locomotor outputs , 2006, Nature.

[87]  F. Benfenati,et al.  Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[88]  David J. Anderson,et al.  A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila , 2004, Nature.

[89]  Julie L. Lefebvre,et al.  Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice , 2004, Nature Neuroscience.

[90]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[91]  J. Fetcho,et al.  Identification of motoneurons and interneurons in the spinal network for escapes initiated by the mauthner cell in goldfish , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  S. Pfaff,et al.  Active Suppression of Interneuron Programs within Developing Motor Neurons Revealed by Analysis of Homeodomain Factor HB9 , 1999, Neuron.

[93]  M. A. Masino,et al.  Engrailed-1 Expression Marks a Primitive Class of Inhibitory Spinal Interneuron , 2004, The Journal of Neuroscience.

[94]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[95]  Shiaoching Gong,et al.  Modified bacterial artificial chromosomes for zebrafish transgenesis. , 2006, Methods.

[96]  A D'Elia,et al.  Spontaneous motor activity in normal fetuses. , 2001, Early human development.

[97]  J. Piek,et al.  Developmental profiles of spontaneous movements in infants. , 1994, Early human development.

[98]  J. Eisen,et al.  Zebrafish deadly seven functions in neurogenesis. , 2001, Developmental biology.

[99]  Martin P Meyer,et al.  Evidence from In Vivo Imaging That Synaptogenesis Guides the Growth and Branching of Axonal Arbors by Two Distinct Mechanisms , 2006, The Journal of Neuroscience.

[100]  G. Geiger,et al.  Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.

[101]  J. Fetcho,et al.  Laser Ablations Reveal Functional Relationships of Segmental Hindbrain Neurons in Zebrafish , 1999, Neuron.

[102]  M. Farrell,et al.  GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. , 1997, Development.

[103]  Ariane Ramaekers,et al.  Developmental origin of wiring specificity in the olfactory system of Drosophila , 2004, Development.

[104]  J. Fetcho,et al.  Morphological variability, segmental relationships, and functional role of a class of commissural interneurons in the spinal cord of goldfish , 1990, The Journal of comparative neurology.

[105]  L. Landmesser,et al.  New optical tools for controlling neuronal activity , 2007, Current Opinion in Neurobiology.

[106]  E. Callaway,et al.  A Genetic Method for Selective and Quickly Reversible Silencing of Mammalian Neurons , 2002, The Journal of Neuroscience.

[107]  Tomomi Sato,et al.  HuC:Kaede, a useful tool to label neural morphologies in networks in vivo , 2006, Genesis.

[108]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Kristin Scott,et al.  Imaging Taste Responses in the Fly Brain Reveals a Functional Map of Taste Category and Behavior , 2006, Neuron.

[110]  G. Miesenböck,et al.  Genetic methods for illuminating the function of neural circuits , 2004, Current Opinion in Neurobiology.

[111]  H. Cline,et al.  Coordinated Motor Neuron Axon Growth and Neuromuscular Synaptogenesis Are Promoted by CPG15 In Vivo , 2005, Neuron.

[112]  Lei Li,et al.  Mitogen‐associated protein kinase‐ and protein kinase A‐dependent regulation of rhodopsin promoter expression in zebrafish rod photoreceptor cells , 2007, Journal of neuroscience research.

[113]  Michael Granato,et al.  Sensorimotor Gating in Larval Zebrafish , 2007, The Journal of Neuroscience.

[114]  Matthew C. Smear,et al.  Vesicular Glutamate Transport at a Central Synapse Limits the Acuity of Visual Perception in Zebrafish , 2007, Neuron.

[115]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[116]  Rafael Yuste,et al.  Stimulating neurons with light , 2002, Current Opinion in Neurobiology.

[117]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Michael J. O'Donovan,et al.  Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo. , 2001, Journal of neurophysiology.

[119]  Y. Jan,et al.  Control of Dendritic Field Formation in Drosophila The Roles of Flamingo and Competition between Homologous Neurons , 2000, Neuron.

[120]  Thomas M Jessell,et al.  Development The decade of the developing brain , 2000, Current Opinion in Neurobiology.

[121]  G. Miyoshi,et al.  Directing neuron-specific transgene expression in the mouse CNS , 2006, Current Opinion in Neurobiology.

[122]  P. Bregestovski,et al.  Functional integrity of green fluorescent protein conjugated glycine receptor channels , 1999, Neuropharmacology.

[123]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[124]  Jun Li,et al.  Early Development of Functional Spatial Maps in the Zebrafish Olfactory Bulb , 2005, The Journal of Neuroscience.

[125]  Alexander F. Schier,et al.  Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish , 2006, The Journal of Neuroscience.

[126]  P. Brehm,et al.  A mutation in serca underlies motility dysfunction in accordion zebrafish. , 2004, Developmental biology.

[127]  V. Verkhusha,et al.  Photoactivatable fluorescent proteins , 2005, Nature Reviews Molecular Cell Biology.

[128]  Greg Miller,et al.  Shining New Light on Neural Circuits , 2006, Science.

[129]  H. Baier,et al.  In Vivo Imaging Reveals Dendritic Targeting of Laminated Afferents by Zebrafish Retinal Ganglion Cells , 2006, Neuron.

[130]  L. C. Katz,et al.  Optical Imaging of Odorant Representations in the Mammalian Olfactory Bulb , 1999, Neuron.

[131]  Jianli Li,et al.  Stabilization of Axon Branch Dynamics by Synaptic Maturation , 2006, The Journal of Neuroscience.

[132]  David R Corey,et al.  Morpholino antisense oligonucleotides: tools for investigating vertebrate development , 2001, Genome Biology.

[133]  R. Rasooly,et al.  Genetic and genomic tools for zebrafish research: The NIH zebrafish initiative , 2003, Developmental Dynamics.

[134]  Konstantin A Lukyanov,et al.  A genetically encoded photosensitizer , 2006, Nature Biotechnology.

[135]  C. Goodman,et al.  The Molecular Biology of Axon Guidance , 1996, Science.

[136]  J. Fetcho,et al.  Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish , 2004, The Journal of comparative neurology.

[137]  M. Granato,et al.  Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. , 2004, Developmental biology.

[138]  M. Westerfield,et al.  Identified motoneurons and their innervation of axial muscles in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  K. Hatta,et al.  Visualizing neurons one‐by‐one in vivo: Optical dissection and reconstruction of neural networks with reversible fluorescent proteins , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[140]  R. Yuste,et al.  Optical probing of neuronal circuits with calcium indicators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[141]  S. Landis Target regulation of neurotransmitter phenotype , 1990, Trends in Neurosciences.

[142]  S. Edgley,et al.  Organisation of inputs to spinal interneurone populations , 2001, The Journal of physiology.

[143]  P. Drapeau,et al.  Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. , 2001, Journal of neurophysiology.

[144]  J. Rubenstein,et al.  Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling , 1999, Nature.

[145]  Atsushi Miyawaki,et al.  Innovations in the Imaging of Brain Functions using Fluorescent Proteins , 2005, Neuron.

[146]  M. Sheng,et al.  Molecular organization of the postsynaptic specialization , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[147]  R. Kelsh,et al.  In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development , 2006, Nature Neuroscience.

[148]  D. Živković,et al.  Hormone‐inducible expression of secreted factors in zebrafish embryos , 1998, Development, growth & differentiation.

[149]  W. Shoji,et al.  Laser-induced gene expression in specific cells of transgenic zebrafish. , 2000, Development.

[150]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[151]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[152]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[153]  E. Gahtan,et al.  Erratum to “Probing neural circuits in the zebrafish: a suite of optical techniques” [Methods 30 (2003) 49–63] , 2003 .

[154]  M. Granato,et al.  The Myotomal diwanka (lh3) Glycosyltransferase and Type XVIII Collagen Are Critical for Motor Growth Cone Migration , 2006, Neuron.

[155]  R. Friedrich,et al.  Combinatorial and Chemotopic Odorant Coding in the Zebrafish Olfactory Bulb Visualized by Optical Imaging , 1997, Neuron.

[156]  T. Hughes,et al.  The jellyfish green fluorescent protein: A new tool for studying ion channel expression and function , 1995, Neuron.

[157]  B. Paw,et al.  Modification of bacterial artificial chromosomes through chi-stimulated homologous recombination and its application in zebrafish transgenesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[158]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[159]  M. Ohkura,et al.  Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein , 2005, The European journal of neuroscience.

[160]  Peter Dedecker,et al.  Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[161]  J. Fetcho,et al.  Zebrafish as a Model System for Studying Neuronal Circuits and Behavior a , 1998, Annals of the New York Academy of Sciences.

[162]  Michael J. O'Donovan,et al.  Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord , 2007, Proceedings of the National Academy of Sciences.

[163]  D. Court,et al.  A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. , 2001, Genomics.

[164]  P. Currie,et al.  Animal models of human disease: zebrafish swim into view , 2007, Nature Reviews Genetics.

[165]  G. W. Bartelmez Mauthner's cell and the nucleus motorius tegmenti , 1915 .

[166]  P. Brehm,et al.  Persistent electrical coupling and locomotory dysfunction in the zebrafish mutant shocked. , 2004, Journal of neurophysiology.

[167]  Yoshihiro Yoshihara,et al.  Mutually Exclusive Glomerular Innervation by Two Distinct Types of Olfactory Sensory Neurons Revealed in Transgenic Zebrafish , 2005, The Journal of Neuroscience.

[168]  Rafael Yuste,et al.  Imaging in Neuroscience and Development: A Laboratory Manual , 2004 .

[169]  R. Mains,et al.  Inducible Genetic Suppression of Neuronal Excitability , 1999, The Journal of Neuroscience.