Flybys in protoplanetary discs: I. Gas and dust dynamics

We present 3D smoothed particle hydrodynamics simulations of protoplanetary discs undergoing a flyby by a stellar perturber on a parabolic orbit lying in a plane inclined relative to the disc mid-plane. We model the disc as a mixture of gas and dust, with grains ranging from 1 {\mu}m to 10 cm in size. Exploring different orbital inclinations, periastron distances and mass ratios, we investigate the disc dynamical response during and after the flyby. We find that flybys induce evolving spiral structure in both gas and dust which can persist for thousands of years after periastron. Gas and dust structures induced by the flyby differ because of drag-induced effects on the dust grains. Variations in the accretion rate by up to an order of magnitude occur over a time-scale of order 10 years or less, inducing FU Orionis-like outbursts. The remnant discs are truncated and warped. The dust disc is left more compact than the gas disc, both because of disc truncation and accelerated radial drift of grains induced by the flyby.

[1]  C. Hayashi,et al.  The Gas Drag Effect on the Elliptic Motion of a Solid Body in the Primordial Solar Nebula , 1976 .

[2]  S. Pfalzner,et al.  Sizes of protoplanetary discs after star-disc encounters , 2013, 1403.8099.

[3]  C. Aspin,et al.  High Resolution Near-Infrared Spectroscopy of FUors and FUor-like stars , 2008, 0801.4116.

[4]  C. Dullemond,et al.  KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK , 2012, 1208.1285.

[5]  D. Forgan,et al.  Are Elias 2-27's Spiral Arms Driven by Self-gravity, or by a Companion? A Comparative Spiral Morphology Study , 2018, The Astrophysical Journal.

[6]  Daniel J. Price,et al.  Phantom: A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics , 2017, Publications of the Astronomical Society of Australia.

[7]  J. Carpenter,et al.  The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity , 2017, 1712.08845.

[8]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[9]  M. Xiang-Gruess Generation of highly inclined protoplanetary discs through single stellar flybys , 2015, 1510.07458.

[10]  Daniel J. Price,et al.  On the accumulation of planetesimals near disc gaps created by protoplanets , 2012, 1203.4953.

[11]  University of Leicester,et al.  Global gravitational instabilities in discs with infall , 2010, 1012.0724.

[12]  I. Bonnell,et al.  Fragmentation of Elongated Cylindrical Clouds. V. Dependence of Mass Ratios on Initial Conditions , 1992 .

[13]  F. Ménard,et al.  SPIRAL ARMS IN THE DISK OF HD 142527 FROM CO EMISSION LINES WITH ALMA , 2014, 1403.1463.

[14]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[15]  J.-F. Gonzalez,et al.  Size and density sorting of dust grains in SPH simulations of protoplanetary discs – II. Fragmentation , 2017, Monthly Notices of the Royal Astronomical Society.

[16]  Andrea Isella,et al.  LARGE-SCALE ASYMMETRIES IN THE TRANSITIONAL DISKS OF SAO 206462 AND SR 21 , 2014 .

[17]  A. Osses,et al.  An inner warp in the DoAr 44 T Tauri transition disc , 2018, 1804.02360.

[18]  L. Testi,et al.  How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array , 2014, 1409.2243.

[19]  S. Pfalzner Spiral Arms in Accretion Disk Encounters , 2003 .

[20]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[21]  E. Serabyn,et al.  Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758 , 2017, 1710.11393.

[22]  C. Aspin,et al.  The FU Orionis Binary System and the Formation of Close Binaries , 2004 .

[23]  H. Liu,et al.  Near-infrared High-resolution Imaging Polarimetry of FU Ori-type Objects: Toward a Unified Scheme for Low-mass Protostellar Evolution , 2018, The Astrophysical Journal.

[24]  A. Johansen,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration , 2007, astro-ph/0702626.

[25]  Esther Buenzli,et al.  Small vs. large dust grains in transitional disks: do different cavity sizes indicate a planet? - SAO 206462 (HD 135344B) in polarized light with VLT/NACO , 2013, 1311.4195.

[26]  T. Henning,et al.  Disk-Disk Encounters between Low-Mass Protoplanetary Accretion Disks , 2005 .

[27]  Cambridge,et al.  Testing the locality of transport in self-gravitating accretion discs — II. The massive disc case , 2003, astro-ph/0501638.

[28]  T. Birnstiel,et al.  Testing particle trapping in transition disks with ALMA , 2015, 1509.03040.

[29]  E. Ostriker Capture and Induced Disk Accretion in Young Star Encounters , 1994 .

[30]  J. Pety,et al.  Tidal stripping and disk kinematics in the RW Aurigae system , 2006 .

[31]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[32]  Daniel J. Price,et al.  Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the Phantom SPH code , 2018, 1803.03279.

[33]  C. Aspin,et al.  Two Embedded Young Stellar Objects in NGC 2264 with FU Orionis Characteristics , 2003 .

[34]  G. Lodato,et al.  Limits on the location of planetesimal formation in self-gravitating protostellar discs , 2009, 0906.1017.

[35]  Daniel J. Price,et al.  Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk , 2018, The Astrophysical Journal.

[36]  C. Clarke,et al.  The Ṁ–M relationship in pre-main sequence stars , 2006 .

[37]  M. Montesinos,et al.  Planetary-like spirals caused by moving shadows in transition discs , 2017, 1712.09157.

[38]  C. Clarke,et al.  Erratum to: Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters , 2018, Monthly Notices of the Royal Astronomical Society.

[39]  G. Laibe,et al.  Revisiting the "radial-drift barrier" of planet formation and its relevance in observed protoplanetary discs , 2011, 1111.3083.

[40]  G. Ogilvie,et al.  The non-linear fluid dynamics of a warped accretion disc , 1998, astro-ph/9812073.

[41]  L. Mundy,et al.  Spiral density waves in a young protoplanetary disk , 2016, Science.

[42]  G. Laibe,et al.  Self-induced dust traps: overcoming planet formation barriers , 2017, 1701.01115.

[43]  G. Lodato,et al.  Gravitational Instabilities in Circumstellar Disks , 2016, 1603.01280.

[44]  P. Hennebelle,et al.  Spiral-driven accretion in protoplanetary discs - II Self-similar solutions , 2016, 1602.01721.

[45]  C. A. Grady,et al.  SPIRAL ARMS IN THE ASYMMETRICALLY ILLUMINATED DISK OF MWC 758 AND CONSTRAINTS ON GIANT PLANETS , 2012, 1212.1466.

[46]  UK,et al.  TIDALLY INDUCED BROWN DWARF AND PLANET FORMATION IN CIRCUMSTELLAR DISKS , 2010, 1005.3017.

[47]  S. Pfalzner,et al.  From star-disc encounters to numerical solutions for a subset of the restricted three-body problem , 2017, 1701.00855.

[48]  James M. Stone,et al.  THE STRUCTURE OF SPIRAL SHOCKS EXCITED BY PLANETARY-MASS COMPANIONS , 2015, 1507.03599.

[49]  Zhi-Yun Li,et al.  A triple protostar system formed via fragmentation of a gravitationally unstable disk , 2016, Nature.

[50]  C. Clarke,et al.  A tidal encounter caught in the act: modelling a star–disc fly-by in the young RW Aurigae system , 2015, 1502.06649.

[51]  A. Juhász,et al.  Spiral arms in thermally stratified protoplanetary discs , 2017, 1711.03559.

[52]  P. Kalas,et al.  Close stellar encounters with planetesimal discs: the dynamics of asymmetry in the β Pictoris system , 2000, astro-ph/0011279.

[53]  The Early ALMA View of the FU Ori Outburst System , 2015, 1509.02543.

[54]  Daniel J. Price,et al.  On planet formation in HL Tau , 2015, 1507.06719.

[55]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[56]  P. Hennebelle,et al.  Spiral-driven accretion in protoplanetary discs - I. 2D models , 2015, 1509.04859.

[57]  C. Bertout,et al.  Tidally induced warps in T Tauri discs — II. A parametric study of spectral energy distributions , 1996 .

[58]  Ruobing Dong,et al.  OBSERVATIONAL SIGNATURES OF PLANETS IN PROTOPLANETARY DISKS: SPIRAL ARMS OBSERVED IN SCATTERED LIGHT IMAGING CAN BE INDUCED BY PLANETS , 2015, 1507.03596.

[59]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[60]  L. Testi,et al.  Dust trapping by spiral arms in gravitationally unstable protostellar discs , 2015, 1504.08099.

[61]  Simon Portegies Zwart,et al.  Mass transfer between debris discs during close stellar encounters , 2016, 1601.08171.

[62]  L. Testi,et al.  Trapping dust particles in the outer regions of protoplanetary disks , 2011, 1112.2349.

[63]  J. Pringle,et al.  The observable effects of tidally induced warps in protostellar discs , 2010, 1001.2570.

[64]  Andrew N. Youdin,et al.  Streaming Instabilities in Protoplanetary Disks , 2004, astro-ph/0409263.

[65]  Sarah T. Maddison,et al.  ALMA images of discs: are all gaps carved by planets? , 2015, 1509.00691.

[66]  C.J.Clarke,et al.  The $\dot{M} - M$ relationship in pre-main sequence stars , 2006, astro-ph/0604196.

[67]  S. Pfalzner,et al.  Effects of inclined star-disk encounter on protoplanetary disk size , 2016, 1608.03239.

[68]  The role of the energy equation in the fragmentation of protostellar discs during stellar encounters , 2006, astro-ph/0610201.

[69]  Daniel J. Price,et al.  Dusty gas with SPH - I. Algorithm and test suite , 2011, 1111.3090.

[70]  Daniel Apai,et al.  DISCOVERY OF A TWO-ARMED SPIRAL STRUCTURE IN THE GAPPED DISK AROUND HERBIG Ae STAR HD 100453 , 2015, 1510.02212.

[71]  C. Clarke,et al.  Accretion disc response to a stellar fly-by , 1993 .

[72]  C. Aspin,et al.  THE NATURE AND EVOLUTIONARY STATE OF THE FU ORIONIS BINARY SYSTEM , 2012 .

[73]  S. Facchini,et al.  Observational signatures of linear warps in circumbinary discs , 2017, 1701.02611.

[74]  P. Hennebelle,et al.  Spiral-driven accretion in protoplanetary discs . III. Tridimensional simulations , 2016, 1611.07376.

[75]  D. Mouillet,et al.  Asymmetric features in the protoplanetary disk MWC 758 , 2015, 1505.05325.

[76]  V. Christiaens,et al.  SPIRAL WAVES TRIGGERED BY SHADOWS IN TRANSITION DISKS , 2016, 1601.07912.

[77]  D. Fischer,et al.  Extreme Solar Systems , 2008 .

[78]  S.Pfalzner,et al.  Disc-Disc Encounters between Low-Mass Protoplanetary Accretion Discs , 2005, astro-ph/0504590.

[79]  U. A. D. Madrid,et al.  VORTICES AND SPIRALS IN THE HD 135344B TRANSITION DISK , 2016, 1607.05775.

[80]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[81]  Daniel J. Price,et al.  Two mechanisms for dust gap opening in protoplanetary discs , 2016, 1602.07457.

[82]  A. Boccaletti,et al.  First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi , 2018, Astronomy & Astrophysics.

[83]  R. Alexander,et al.  Gas and multispecies dust dynamics in viscous protoplanetary discs: the importance of the dust back-reaction , 2018, Monthly Notices of the Royal Astronomical Society.

[84]  M. Bate On the diversity and statistical properties of protostellar discs , 2018, 1801.07721.

[85]  Peggy Varniere,et al.  Driving Spiral Arms in the Circumstellar Disks of HD 100546 and HD 141569A , 2003 .

[86]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[87]  Joseph E. Rodriguez,et al.  Multiple Stellar Flybys Sculpting the Circumstellar Architecture in RW Aurigae , 2018, The Astrophysical Journal.

[88]  University of Exeter,et al.  On the diffusive propagation of warps in thin accretion discs , 2010, 1002.2973.

[89]  F. Louvet,et al.  Dusty spirals triggered by shadows in transition discs , 2018, Astronomy & Astrophysics.

[90]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[91]  Daniel J. Price,et al.  MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas , 2018, 1802.03213.

[92]  R. Rafikov Nonlinear Propagation of Planet-generated Tidal Waves , 2001, astro-ph/0110496.

[93]  S. Pfalzner Encounter-driven accretion in young stellar clusters – A connection to FUors? , 2008, 0810.2854.

[94]  Susanne Pfalzner Early evolution of the birth cluster of the solar system , 2013 .

[95]  Daniel J. Price,et al.  A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics , 2015, 1505.00969.

[96]  L. Mundy,et al.  Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks - Radial constraints on the dust properties and the disk structure , 2015, 1512.05679.

[97]  Daniel J. Price,et al.  Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc , 2018, 1803.02484.

[98]  Disc-mass distribution in star-disc encounters , 2011, 1111.2466.

[99]  Daniel J. Price,et al.  On the origin of horseshoes in transitional discs , 2016, 1609.08159.

[100]  M. Min,et al.  Shadows cast on the transition disk of HD 135344B: Multiwavelength VLT/SPHERE polarimetric differential imaging , 2016, 1603.00481.

[101]  Strong effect of the cluster environment on the size of protoplanetary discs , 2015, 1504.06092.

[102]  S. Pfalzner,et al.  Parameter study of star-disc encounters , 2005, astro-ph/0504288.

[103]  C. Clarke,et al.  Collision velocity of dust grains in self-gravitating protoplanetary discs , 2016, Monthly notices of the Royal Astronomical Society.

[104]  P. S. Epstein,et al.  On the Resistance Experienced by Spheres in their Motion through Gases , 1924 .

[105]  J. Blum Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals , 2018, Space Science Reviews.

[106]  C. Clarke,et al.  Protoplanetary Disc Response to Distant Tidal Encounters in Stellar Clusters , 2018, 1801.03510.

[107]  D. Apai,et al.  FU Orionis: A Binary Star? , 2003, astro-ph/0311606.