Exploring the significance of morphological diversity for cerebellar granule cell excitability

The relatively simple and compact morphology of cerebellar granule cells (CGCs) has led to the view that heterogeneity in CGC shape has negligible impact upon the integration of mossy fibre (MF) information. Following electrophysiological recording, 3D models were constructed from high-resolution imaging data to identify morphological features that could influence the coding of MF input patterns by adult CGCs. Quantification of MF and CGC morphology provided evidence that CGCs could be connected to the multiple rosettes that arise from a single MF input. Predictions from our computational models propose that MF inputs could be more densely encoded within the CGC layer than previous models suggest. Moreover, those MF signals arriving onto the dendrite closest to the axon will generate greater CGC excitation. However, the impact of this morphological variability on MF input selectivity will be attenuated by high levels of CGC inhibition providing further flexibility to the MF → CGC pathway. These features could be particularly important when considering the integration of multimodal MF sensory input by individual CGCs.

[1]  W. Wisden,et al.  TASK-3 Two-Pore Domain Potassium Channels Enable Sustained High-Frequency Firing in Cerebellar Granule Neurons , 2007, The Journal of Neuroscience.

[2]  D. Harriman CEREBELLAR CORTEX, CYTOLOGY AND ORGANIZATION , 1974 .

[3]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[4]  Mark Farrant,et al.  Maturation of EPSCs and Intrinsic Membrane Properties Enhances Precision at a Cerebellar Synapse , 2003, The Journal of Neuroscience.

[5]  J. Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-Purkinje cell numerical transfer. , 1972, Brain research.

[6]  E. D’Angelo,et al.  Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. , 1999, Journal of neurophysiology.

[7]  Tiago Branco,et al.  Tonic Inhibition Enhances Fidelity of Sensory Information Transmission in the Cerebellar Cortex , 2012, The Journal of Neuroscience.

[8]  David Attwell,et al.  Tonic and Spillover Inhibition of Granule Cells Control Information Flow through Cerebellar Cortex , 2002, Neuron.

[9]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[10]  S. Ferrari,et al.  Author contributions , 2021 .

[11]  Egidio D'Angelo,et al.  Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. , 2002, Journal of neurophysiology.

[12]  Joseph E LeDoux,et al.  Structural plasticity and memory , 2004, Nature Reviews Neuroscience.

[13]  Michael L. Hines,et al.  Mitral cell spike synchrony modulated by dendrodendritic synapse location , 2012, Front. Comput. Neurosci..

[14]  Michael Häusser,et al.  Multimodal sensory integration in single cerebellar granule cells in vivo , 2015, eLife.

[15]  E. D'Angelo,et al.  Long-Term Potentiation of Intrinsic Excitability at the Mossy Fiber–Granule Cell Synapse of Rat Cerebellum , 2000, The Journal of Neuroscience.

[16]  Matthew A Xu-Friedman,et al.  Ultrastructural Contributions to Desensitization at Cerebellar Mossy Fiber to Granule Cell Synapses , 2003, The Journal of Neuroscience.

[17]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[18]  D. Heck Rat cerebellar cortex in vitro responds specifically to moving stimuli , 1993, Neuroscience Letters.

[19]  Masao Ito The molecular organization of cerebellar long-term depression , 2002, Nature Reviews Neuroscience.

[20]  P. Groves,et al.  The substantia nigra of the rat: A golgi study , 1977, The Journal of comparative neurology.

[21]  R. Silver,et al.  Spillover of Glutamate onto Synaptic AMPA Receptors Enhances Fast Transmission at a Cerebellar Synapse , 2002, Neuron.

[22]  K. Iremonger,et al.  GnRH Neurons Elaborate a Long-Range Projection with Shared Axonal and Dendritic Functions , 2013, The Journal of Neuroscience.

[23]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  R. Angus Silver,et al.  Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding , 2014, Neuron.

[25]  Andreas Draguhn,et al.  Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons , 2014, Neuron.

[26]  Adam W Hantman,et al.  Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells , 2013, eLife.

[27]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[28]  Farzan Nadim,et al.  Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. , 2009, Journal of neurophysiology.

[29]  V. Braitenberg,et al.  The detection and generation of sequences as a key to cerebellar function: Experiments and theory , 1997, Behavioral and Brain Sciences.

[30]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[31]  J. Eccles Circuits in the cerebellar control of movement. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[32]  V Taglietti,et al.  Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. , 1998, Journal of neurophysiology.

[33]  Detlef Heck,et al.  Detection of sequences in the cerebellar cortex: numerical estimate of the possible number of tidal-wave inducing sequences represented , 2003, Journal of Physiology-Paris.

[34]  Thierry Nieus,et al.  Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. , 2005, Progress in brain research.

[35]  J. Albus A Theory of Cerebellar Function , 1971 .

[36]  F. Sultan,et al.  Distribution of mossy fibre rosettes in the cerebellum of cat and mice: evidence for a parasagittal organization at the single fibre level , 2001, The European journal of neuroscience.

[37]  Alastair M. Hosie,et al.  Are Extrasynaptic GABAA Receptors Important Targets for Sedative/Hypnotic Drugs? , 2012, The Journal of Neuroscience.

[38]  Thierry Nieus,et al.  A Realistic Large-Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-Temporal Filtering Properties , 2009, Front. Cell. Neurosci..

[39]  Martin T. Wiechert,et al.  Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons , 2015, Nature Neuroscience.

[40]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[41]  Nathaniel B Sawtell,et al.  Multimodal Integration in Granule Cells as a Basis for Associative Plasticity and Sensory Prediction in a Cerebellum-like Circuit , 2010, Neuron.

[42]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[43]  Jean-Luc Dupont,et al.  Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex , 2015, eLife.

[44]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[45]  Alan Peters,et al.  THE SMALL PYRAMIDAL NEURON OF THE RAT CEREBRAL CORTEX , 1968, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[46]  Bert Sakmann,et al.  Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons , 1995, Neuron.

[47]  D. Linden,et al.  Chronic In Vivo Imaging of Ponto-Cerebellar Mossy Fibers Reveals Morphological Stability during Whisker Sensory Manipulation in the Adult Rat123 , 2015, eNeuro.

[48]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[49]  Henrik Jörntell,et al.  Properties of Somatosensory Synaptic Integration in Cerebellar Granule Cells In Vivo , 2006, The Journal of Neuroscience.

[50]  H. G. Ferreira,et al.  The biophysical basis of excitability: Definitions, abbreviations and conventions , 1985 .

[51]  S S Fox,et al.  Mechanisms for limbic modification of cerebellar and cortical afferent information. , 1967, Progress in brain research.

[52]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[53]  Troy W. Margrie,et al.  Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons , 2014, Nature Reviews Neuroscience.

[54]  M. W. Marshall,et al.  The Biophysical Basis of Excitability , 1985 .

[55]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[56]  Thomas A. Nielsen,et al.  Rapid Vesicular Release, Quantal Variability, and Spillover Contribute to the Precision and Reliability of Transmission at a Glomerular Synapse , 2005, The Journal of Neuroscience.

[57]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[58]  Terrence J. Sejnowski,et al.  An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding , 1994, Neural Computation.

[59]  Alan Peters,et al.  THE SMALL PYRAMIDAL NEURON OF THE RAT CEREBRAL CORTEX The Axon Hillock and Initial Segment , 1968 .

[60]  E. De Schutter,et al.  Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. , 1998, Journal of neurophysiology.

[61]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[62]  Per Brodal,et al.  Spatial segregation between populations of ponto‐cerebellar neurons: Statistical analysis of multivariate spatial interactions , 1991, The Anatomical record.

[63]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[64]  K. Doya,et al.  Cerebellar aminergic neuromodulation: towards a functional understanding , 2004, Brain Research Reviews.

[65]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[66]  T Tyrrell,et al.  Cerebellar cortex: its simulation and the relevance of Marr's theory. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[67]  Jerry B. Marion,et al.  Experiments and theory , 1963 .

[68]  R. Silver,et al.  Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse , 2006, Nature.

[69]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.