Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te)

We report by means of ab initio density functional theory based calculations that the semiconducting energy gap of bilayer transition metal dichalcogenides (TMDs) can be reduced by applying mechanical strains, tuning interlayer distance and applying an external electric field. Our results suggest that in-plane strains cause semiconductor to metal (S–M) transitions in bilayer sheets. These transitions, however, strongly depend on the types of applied strain. The energy gap of semiconducting TMDs gets reduced continuously by reducing the bilayer separation, eventually rendering them metallic at a critical value of interlayer distance. Electrically gated semiconducting bilayer TMDs are also found to show a reduction in the band gap when increasing the magnitude of the electric field to result in band gap closure at a critical value of the field. S–M transitions are also found to occur irrespective of the types of stacking between the two layers of bilayer TMDs. The possibility of tuning the energy gap in a controlled way over a wide range of energy makes TMDs potential candidates for tunable nanoelectronics.

[1]  Andres Castellanos-Gomez,et al.  Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2 , 2012, Nanoscale Research Letters.

[2]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[3]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[4]  L. Colombo,et al.  Gap opening in graphene by shear strain , 2010, 1006.1999.

[5]  V. Shenoy,et al.  Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. , 2012, ACS nano.

[6]  Hong Jiang Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach , 2012 .

[7]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[8]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[9]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[10]  Ashok Kumar,et al.  Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement , 2012 .

[11]  Ashok Kumar,et al.  Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors , 2012 .

[12]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[13]  Shang Da-Shang,et al.  Resistance switching in oxides with inhomogeneous conductivity , 2013, 1304.3290.

[14]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[15]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[16]  Kobayashi,et al.  Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. , 1995, Physical review. B, Condensed matter.

[17]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[18]  A. Singh,et al.  Semiconductor-metal transition in semiconducting bilayer sheets of transition metal dichalcogenides , 2012, 1203.6820.

[19]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[20]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[22]  John Parthenios,et al.  Subjecting a graphene monolayer to tension and compression. , 2009, Small.

[23]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[24]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[25]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[26]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[27]  Sushil Auluck,et al.  Band structure and optical response of 2H-MoX2 compounds (X=S, Se, and Te) , 2005 .

[28]  W. G. Dawson,et al.  Electronic structure and crystallography of MoTe2 and WTe2 , 1987 .

[29]  I. Parkin,et al.  Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—highly hydrophobic sticky surfaces , 2006 .

[30]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[31]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[32]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[33]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[34]  Y. Son,et al.  Controlling energy gap of bilayer graphene by strain. , 2010, Nano letters.

[35]  A. H. Reshak,et al.  Calculated optical properties of 2 H − MoS 2 intercalated with lithium , 2003 .

[36]  Wanlin Guo,et al.  Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. , 2012, Physical chemistry chemical physics : PCCP.

[37]  J. Hone,et al.  Probing strain-induced electronic structure change in graphene by Raman spectroscopy. , 2010, Nano letters.

[38]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[39]  Linze Li,et al.  Tuning Electronic Structure of Bilayer MoS2 by Vertical Electric Field: A First-Principles Investigation , 2012 .

[40]  Ashok Kumar,et al.  Ab initio study of platinum induced reconstructions on Ge(001)-(1 2) surface with dimerization , 2011 .

[41]  A. Mazur,et al.  Band structure of MoS 2 , MoSe 2 , and α − MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations , 2001 .

[42]  C. Colliex,et al.  Ab initio study of bilateral doping within the MoS2-NbS2 system , 2008, 0806.1411.

[43]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[44]  Ashok Kumar,et al.  A first principle Comparative study of electronic and optical properties of 1H – MoS2 and 2H – MoS2 , 2012 .

[45]  J. Ni,et al.  Modulation of electronic properties of hexagonal boron nitride bilayers by an electric field: A first principles study , 2010 .

[46]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[47]  Geoffrey Pourtois,et al.  Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 , 2011, Nano Research.

[48]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[49]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[50]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[51]  Ashok Kumar,et al.  A first principle study of interband transitions and electron energy loss in mono and bilayer graphene: Effect of external electric field , 2012 .

[52]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[53]  S. Sanvito,et al.  Electric field effects on armchair MoS2 nanoribbons. , 2012, ACS nano.