Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory

Resistance random access memory (RRAM) composed of stacked aluminum (Al)/InGaZnO(IGZO)/Al is investigated with different gallium concentrations. The stoichiometric ratio (x) of gallium in the InGaxZnO is varied from 0 to 4 for intentional control of the concentration of the oxygen vacancies (VO), which influences the electrical characteristics of the RRAM. No Ga in the IGZO (x = 0) significantly increases the value of VO and leads to a breakdown of the IGZO. In contrast, a high Ga concentration (x = 4) suppresses the generation of VO; hence, resistive switching is disabled. The optimal value of x is 2. Accordingly, enduring RRAM characteristics are achieved.

[1]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[2]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[3]  J. Cho,et al.  Size control of nanocrystals in InGaZnO4 thin films fabricated by using the sol-gel method , 2012 .

[4]  Hideo Hosono,et al.  Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application , 2006 .

[5]  Jerzy Kanicki,et al.  Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors , 2009 .

[6]  Xiangkang Meng,et al.  Field-induced resistive switching based on space-charge-limited current , 2007 .

[7]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[8]  Sung-Yool Choi,et al.  Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films , 2009 .

[9]  X. Bai,et al.  Electroforming and endurance behavior of Al/Pr0.7Ca0.3MnO3/Pt devices , 2011 .

[10]  Jung Won Seo,et al.  Transparent resistive random access memory and its characteristics for nonvolatile resistive switching , 2008 .

[11]  M. Han,et al.  Effect of Metallic Composition on Electrical Properties of Solution-Processed Indium-Gallium-Zinc-Oxide Thin-Film Transistors , 2010, IEEE Transactions on Electron Devices.

[12]  Y. Liu,et al.  Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor , 2012 .

[13]  Ming-Jinn Tsai,et al.  Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films , 2010 .

[14]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[15]  J. Cho,et al.  Bistable resistance memory switching effect in amorphous InGaZnO thin films , 2010 .

[16]  Yang-Kyu Choi,et al.  Resistive switching of aluminum oxide for flexible memory , 2008 .

[17]  Jong Hyun Shim,et al.  Solution-processed InGaZnO-based thin film transistors for printed electronics applications , 2009 .

[18]  Hideo Hosono,et al.  Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system , 2007 .

[19]  Sungho Kim,et al.  Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction , 2010 .

[20]  Xiaomin Li,et al.  The polarity origin of the bipolar resistance switching behaviors in metal/La0.7Ca0.3MnO3/Pt junctions , 2009 .

[21]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[22]  Hyun Jae Kim,et al.  Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors , 2009 .

[23]  M. Rozenberg,et al.  Mechanism for bipolar resistive switching in transition-metal oxides , 2010, 1001.0703.