Chemical sensors based on molecularly modified metallic nanoparticles

This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors.

[1]  S. Nie,et al.  Self-assembled nanoparticle probes for recognition and detection of biomolecules. , 2002, Journal of the American Chemical Society.

[2]  D. Castner,et al.  Evidence of impurities in thiolated single-stranded DNA oligomers and their effect on DNA self-assembly on gold. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[3]  Peter N. Njoki,et al.  Ternary alloy nanoparticles with controllable sizes and composition and electrocatalytic activity , 2006 .

[4]  George C. Schatz,et al.  DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response , 2000 .

[5]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[6]  H. Wohltjen,et al.  Size-Induced Metal to Semiconductor Transition in a Stabilized Gold Cluster Ensemble , 1998 .

[7]  R. Corn,et al.  Creating advanced multifunctional biosensors with surface enzymatic transformations. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  Victor J. Cadarso,et al.  Absorbance-Based Integrated Optical Sensors , 2005 .

[9]  Application of organic supramolecular and polymeric compounds for chemical sensors , 1994 .

[10]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[11]  I. Willner,et al.  Bis-bipyridinium cyclophane receptor-au nanoparticle superstructures for electrochemical sensing applications , 1999 .

[12]  V. Rotello,et al.  Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers. , 2002, Journal of the American Chemical Society.

[13]  K. Naka,et al.  Temperature-dependent reversible self-assembly of gold nanoparticles into spherical aggregates by molecular recognition between pyrenyl and dinitrophenyl units , 2003 .

[14]  K. Krischer,et al.  Turing-Type Patterns on Electrode Surfaces , 2001, Science.

[15]  James E. Hutchison,et al.  Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters , 1995 .

[16]  M. Sastry,et al.  On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. , 2001, Bioconjugate chemistry.

[17]  Yanlin Song,et al.  Self-Assembly of Uniform Spherical Aggregates of Magnetic Nanoparticles through π-π Interactions. , 2001, Angewandte Chemie.

[18]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[19]  A. Kaifer,et al.  Cyclodextrin-Modified Gold Nanospheres. Host−Guest Interactions at Work to Control Colloidal Properties , 1999 .

[20]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[21]  Ming Zheng,et al.  Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. , 2003, Journal of the American Chemical Society.

[22]  K. Shull,et al.  Dynamic properties of a model polymer/metal nanocomposite : gold particles in poly (tert-butyl acrylate). , 1999 .

[23]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[24]  I. Willner,et al.  Nanoparticles as structural and functional units in surface-confined architectures. , 2001, Chemical communications.

[25]  M. Uhlén,et al.  Detection of mutations in PCR products from clinical samples by surface plasmon resonance , 1997, Journal of molecular recognition : JMR.

[26]  J.D.N. Cheeke,et al.  Acoustic wave gas sensors , 1999 .

[27]  C. Mirkin,et al.  A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. , 2000, Analytical chemistry.

[28]  Tobias Vossmeyer,et al.  Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications , 2002 .

[29]  L. Deng,et al.  Studies of Surface Coverage and Orientation of DNA Molecules Immobilized onto Preformed Alkanethiol Self-Assembled Monolayers , 2000 .

[30]  G. Schmid,et al.  Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities , 2003 .

[31]  S. Bhattacharya,et al.  Synthesis and Characterization of Novel Cationic Lipid and Cholesterol-Coated Gold Nanoparticles and Their Interactions with Dipalmitoylphosphatidylcholine Membranes , 2003 .

[32]  D. R. Daniel,et al.  Core-shell nanostructured nanoparticle films as chemically sensitive interfaces. , 2001, Analytical chemistry.

[33]  Xiaoping Zhou,et al.  Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides , 2000 .

[34]  R. Schlögl,et al.  Gold-nanoparticle/organic linker films: self-assembly, electronic and structural characterisation, composition and vapour sensitivity. , 2004, Faraday discussions.

[35]  W. Göpel,et al.  Self-assembled monolayers for chemical sensors: molecular recognition by immobilized supramolecular structure , 1996 .

[36]  Jun Wang,et al.  Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. , 2003, Analytical chemistry.

[37]  S. Shaw,et al.  Organic-inorganic hybrids-the best of both worlds? , 2003 .

[38]  E. Katz,et al.  Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  V. Rotello,et al.  Redox-Modulated Recognition of Flavin by Functionalized Gold Nanoparticles , 1999 .

[40]  Kazuhiko Ishihara,et al.  Quartz crystal microbalance immunosensors for environmental monitoring. , 2006, Biosensors & bioelectronics.

[41]  Gary Stix,et al.  Little Big Science. , 1999 .

[42]  I. Willner,et al.  Nanostructured Gold Colloid Electrodes , 2000 .

[43]  Jorge E. Fernandez,et al.  Mathematical Modelling of 3D Electron-Photon Transport in Microbeam Analysis , 2000, Microchimica Acta.

[44]  Michael R. Zachariah,et al.  Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids , 2003 .

[45]  Jun Wang,et al.  Attachment of Ferrocene‐Capped Gold Nanoparticle/Streptavidin Conjugates onto Electrode Surfaces Covered with Biotinylated Biomolecules for Enhanced Voltammetric Analysis , 2004 .

[46]  M. Orrit,et al.  Absorption and scattering microscopy of single metal nanoparticles. , 2006, Physical chemistry chemical physics : PCCP.

[47]  Frank Caruso,et al.  Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. , 2005, The journal of physical chemistry. B.

[48]  Vincent M. Rotello,et al.  Self-assembly of nanoparticles into structured spherical and network aggregates , 2000, Nature.

[49]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[50]  Kadir Aslan,et al.  Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. , 2005, Current opinion in chemical biology.

[51]  D. A. Nelson,et al.  Sorptive behavior of monolayer-protected gold nanoparticle films: implications for chemical vapor sensing. , 2003, Analytical chemistry.

[52]  E. Wang,et al.  Synthesis of PtNPs/AQ/Ru(bpy)3(2+) colloid and its application as a sensitive solid-state electrochemiluminescence sensor material. , 2006, The journal of physical chemistry. B.

[53]  Itamar Willner,et al.  Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles , 2000 .

[54]  R. Murray,et al.  Growth, conductivity, and vapor response properties of metal ion-carboxylate linked nanoparticle films. , 2004, Faraday discussions.

[55]  Lisa B. Israel,et al.  Electroactivity of Cu2+ at a thin film assembly of gold nanoparticles linked by 11-mercaptoundecanoic acid , 2001 .

[56]  Robert Wilson Haptenylated mercaptodextran-coated gold nanoparticles for biomolecular assays. , 2003, Chemical communications.

[57]  M. Mascini,et al.  Immobilisation of DNA probes for the development of SPR-based sensing. , 2004, Biosensors & bioelectronics.

[58]  J. Landers,et al.  A microchip sensor for calcium determination , 2006, Analytical and bioanalytical chemistry.

[59]  R. Corn,et al.  Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. , 2001, Analytical chemistry.

[60]  D G Myszka,et al.  Advances in surface plasmon resonance biosensor analysis. , 2000, Current opinion in biotechnology.

[61]  Hongxing Xu,et al.  Modeling the optical response of nanoparticle-based surface plasmon resonance sensors , 2002 .

[62]  Jin Luo,et al.  Nanoparticle-structured sensing array materials and pattern recognition for VOC detection , 2005 .

[63]  Sara Tombelli,et al.  A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor. , 2004, Biosensors & bioelectronics.

[64]  D. Cahen,et al.  Molecules and electronic materials , 2002 .

[65]  R. Murray,et al.  Stable, monolayer-protected metal alloy clusters [18] , 1998 .

[66]  Stephen D. Evans,et al.  Vapour sensing using hybrid organic-inorganic nanostructured materials , 2000 .

[67]  I. Willner,et al.  Au-nanoparticle–bis-bipyridinium cyclophane superstructures: assembly, characterization and sensoric applications , 1999 .

[68]  John R. Miller,et al.  Charge Transfer on the Nanoscale: Current Status , 2003 .

[69]  R. Crooks,et al.  Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[70]  K. Müllen,et al.  Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor‐Sensing Properties , 2002 .

[71]  J. Heath,et al.  Effects of Size Dispersion Disorder on the Charge Transport in Self-Assembled 2-D Ag Nanoparticle Arrays , 2002 .

[72]  Stephen Mann,et al.  Directed Self‐Assembly of Nanoparticles into Macroscopic Materials Using Antibody–Antigen Recognition , 1999 .

[73]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[74]  C. Murphy,et al.  Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. , 2004, Journal of the American Chemical Society.

[75]  D. Astruc,et al.  Colloids as redox sensors: recognition of H2PO4− and HSO4− by amidoferrocenylalkylthiol–gold nanoparticles , 2000 .

[76]  Sungho Jin,et al.  Monolayered Ni–Co alloy nanoparticles template fabricated using a Ni nanoparticle array , 2006 .

[77]  Bruno M. Humbel,et al.  Preparation of Functional Silane-Stabilized Gold Colloids in the (Sub)nanometer Size Range , 1997 .

[78]  R. Murray,et al.  Arenethiolate Monolayer-Protected Gold Clusters , 1999 .

[79]  Weihong Tan,et al.  Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. , 2003, Journal of the American Chemical Society.

[80]  Joseph T. Hupp,et al.  Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions , 2001 .

[81]  Lin Lin,et al.  DNA Biosensor with High Sensitivity Amplified by Gold Nanoparticles , 2001 .

[82]  Gonen Ashkenasy,et al.  Molecular engineering of semiconductor surfaces and devices. , 2002, Accounts of chemical research.

[83]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[84]  Zeev Rosenzweig,et al.  Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. , 2002, Analytical chemistry.

[85]  Arthur W. Snow,et al.  Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor , 1998 .

[86]  E. F. Venger,et al.  A sensor based on the planar-polarization interferometer , 1998 .

[87]  Penelope C Ioannou,et al.  Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. , 2003, Analytical chemistry.

[88]  T. Swager,et al.  CONDUCTING POLYMETALLOROTAXANES : A SUPRAMOLECULAR APPROACH TO TRANSITION METAL ION SENSORS , 1996 .

[89]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[90]  Wolfgang Göpel Chemical analysis and sensorics with microstructured devices , 1997 .

[91]  Alastair W Wark,et al.  Fabricating RNA microarrays with RNA-DNA surface ligation chemistry. , 2005, Analytical chemistry.

[92]  Robert E. Miles,et al.  Vapour sensing using surface functionalized gold nanoparticles , 2002 .

[93]  Wenjun Yang,et al.  Nanoencapsulated microcrystalline particles for superamplified biochemical assays. , 2002, Analytical chemistry.

[94]  I Karube,et al.  Detection of PCR products in solution using surface plasmon resonance. , 1999, Analytical chemistry.

[95]  I. Willner,et al.  An Au nanoparticle/bisbipyridinium cyclophane-functionalized ion-sensitive field-effect transistor for the sensing of adrenaline. , 1999, Analytical chemistry.

[96]  Darren Emge,et al.  Overview of chem-bio sensing , 2006, SPIE Defense + Commercial Sensing.

[97]  Gang-yu Liu,et al.  Synthesis of Gold Glyconanoparticles and Biological Evaluation of Recombinant Gp120 Interactions , 2003 .

[98]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[99]  N. Riza,et al.  Optical substrate thickness measurement system using hybrid fiber-freespace optics and selective wavelength interferometry , 2007 .

[100]  I. Willner,et al.  Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. , 2001, Journal of the American Chemical Society.

[101]  D. A. Russell,et al.  Rapid, Quantitative Colorimetric Detection of a Lectin Using Mannose-Stabilized Gold Nanoparticles , 2003 .

[102]  Ruedi Aebersold,et al.  Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. , 2004, Analytical chemistry.

[103]  I. Willner,et al.  Au-colloid–‘molecular square’ superstructures: novel electrochemical sensing interfaces , 1999 .

[104]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[105]  Akio Yasuda,et al.  Chemiresistor coatings from Pt- and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors , 2004 .

[106]  D. Roy,et al.  Reflection and Absorption Techniques for Optical Characterization of Chemically Assembled Nanomaterials , 2004 .

[107]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[108]  M. Ward,et al.  In Situ Interfacial Mass Detection with Piezoelectric Transducers , 1990, Science.

[109]  S. Chvalun,et al.  The effect of adsorption on the conductivity of self-organized metal-poly(para-xylene) nanocomposites , 2002 .

[110]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[111]  R. Corn,et al.  Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays. , 2004, Journal of the American Chemical Society.

[112]  P. Gómez‐Romero Hybrid Organic–Inorganic Materials—In Search of Synergic Activity , 2001 .

[113]  M. Ancona,et al.  Electrical noise in gold nanocluster sensors , 2006 .

[114]  Hanqi Zhang,et al.  Enhanced optical immunosensor based on surface plasmon resonance for determination of transferrin. , 2006, Talanta.

[115]  C. Zhong,et al.  Structures and Properties of Nanoparticle Thin Films Formed via a One-Step Exchange−Cross-Linking−Precipitation Route , 1999 .

[116]  M. Pileni,et al.  Template Design of Microreactors with Colloidal Assemblies: Control the Growth of Copper Metal Rods , 1998 .

[117]  Minami Yoda,et al.  Towards an in vivo biologically inspired nanofactory. , 2007, Nature nanotechnology.

[118]  B. Åkerman,et al.  Nonspecific and Thiol-Specific Binding of DNA to Gold Nanoparticles , 2003 .

[119]  Jinhan Cho,et al.  Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films , 2005 .

[120]  R E Kunz,et al.  Wavelength-interrogated optical sensor for biochemical applications. , 2000, Optics letters.

[121]  Stephen D. Evans,et al.  Influence of a Terminal Functionality on the Physical Properties of Surfactant-Stabilized Gold Nanoparticles , 1998 .

[122]  Bobby Pejcic,et al.  Impedance spectroscopy: Over 35 years of electrochemical sensor optimization , 2006 .

[123]  M. Maye,et al.  Imparting biomimetic ion-gating recognition properties to electrodes with a hydrogen-bonding structured core-shell nanoparticle network. , 2000, Analytical chemistry.

[124]  Ronen Polsky,et al.  Magnetically-induced solid-state electrochemical detection of DNA hybridization. , 2002, Journal of the American Chemical Society.

[125]  Chia-Jung Lu,et al.  A vapor selectivity study of microsensor arrays employing various functionalized ligand protected gold nanoclusters , 2006 .

[126]  Michael J. Natan,et al.  SURFACE PLASMON RESONANCE OF AU COLLOID-MODIFIED AU FILMS : PARTICLE SIZE DEPENDENCE , 1999 .

[127]  Q. Cheng,et al.  Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[128]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[129]  J. Maier Electrochemical sensor principles for redox–active and acid-base–active gases1I would like to dedicate this article to the memory of Wolfgang Göpel.1 , 2000 .

[130]  H. Tuller Review of electrical properties of metal oxides as applied to temperature and chemical sensing , 1983 .

[131]  María Begoña González-García,et al.  Metal‐Nanoparticles Based Electroanalysis , 2002 .

[132]  Lon A. Porter,et al.  Gold and Silver Nanoparticles Functionalized by the Adsorption of Dialkyl Disulfides. , 1998, Langmuir : the ACS journal of surfaces and colloids.

[133]  D. Roy,et al.  Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol , 2001 .

[134]  Long Jiang,et al.  A novel microgravimetric DNA sensor with high sensitivity. , 2003, Biochemical and biophysical research communications.

[135]  K. Krischer,et al.  Two-Dimensional Imaging of Potential Waves in Electrochemical Systems by Surface Plasmon Microscopy , 1995, Science.

[136]  P. Rossky,et al.  FROM MOLECULES TO MATERIALS : CURRENT TRENDS AND FUTURE DIRECTIONS , 1998 .

[137]  Wolfgang Göpel,et al.  Nanosensors and molecular recognition , 1996 .

[138]  M. El-Sayed Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. , 2004, Accounts of chemical research.

[139]  R. Murray,et al.  Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters , 2000 .

[140]  K. Torigoe,et al.  Spontaneous Formation of Gold Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly(amidoamine)dendrimers , 2000 .

[141]  Christopher J. Kiely,et al.  Some recent advances in nanostructure preparation from gold and silver particles: a short topical review , 2002 .

[142]  Itamar Willner,et al.  Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles , 2004 .

[143]  T. Yonezawa,et al.  Controlled Formation of Smaller Gold Nanoparticles by the Use of Four-Chained Disulfide Stabilizer , 2001 .

[144]  A. Matzger,et al.  1/f noise in gold nanoparticle chemosensors , 2005 .

[145]  Nongjian Tao,et al.  High resolution surface plasmon resonance spectroscopy , 1999 .

[146]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[147]  Janos H. Fendler,et al.  Self-Assembled Nanostructured Materials , 1996 .

[148]  Lin He,et al.  Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization , 2000 .

[149]  J. Sommers,et al.  Alkanethiolate-Protected Copper Nanoparticles: Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution† , 2001 .

[150]  J. Malm,et al.  Pt309Phen 36*O30 ± 10, a Four‐Shell Platinum Cluster , 1989 .

[151]  B. Korgel,et al.  Temperature-Dependent Electron Transport through Silver Nanocrystal Superlattices , 2001 .

[152]  Kazuo Hotate,et al.  Fiber Sensor Technology Today , 1996, QELS 1996.

[153]  Etienne Snoeck,et al.  Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties , 1999 .

[154]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[155]  Sara Tombelli,et al.  Combination of amplification and post-amplification strategies to improve optical DNA sensing. , 2003, Biosensors & bioelectronics.

[156]  R. Corn,et al.  Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. , 2004, Analytical chemistry.

[157]  M. Sastry,et al.  Evidence for novel interdigitated bilayer formation of fatty acids during three-dimensional self-assembly on silver colloidal particles , 1997 .

[158]  R. Murray,et al.  Electron hopping conductivity and vapor sensing properties of flexible network polymer films of metal nanoparticles. , 2002, Journal of the American Chemical Society.

[159]  Yi Xiao,et al.  Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. , 2004, Journal of the American Chemical Society.

[160]  T. Ohsaka,et al.  Gold nanoparticle arrays for the voltammetric sensing of dopamine , 2003 .

[161]  C. Mirkin,et al.  A gold nanoparticle/latex microsphere-based colorimetric oligonucleotide detection method , 2000 .

[162]  M. Natan,et al.  Colloidal Au-enhanced surface plasmon resonance immunosensing. , 1998, Analytical chemistry.

[163]  S. Dhawan,et al.  Signal amplification systems in immunoassays: implications for clinical diagnostics , 2006, Expert review of molecular diagnostics.

[164]  S. Efrima,et al.  Xanthate Capping of Silver, Copper, and Gold Colloids , 2002 .

[165]  J. F. Stoddart,et al.  An enlarged bis-bipyridinium cyclophane-Au nanoparticle superstructure for selective electrochemical sensing applications , 2000 .

[166]  Stephen Mann,et al.  Spatial organization and patterning of gold nanoparticles on self-assembled biolipid tubular templates , 1996 .

[167]  Wolfgang Göpel,et al.  Metal Oxide Sensors: New Devices Through Tailoring Interfaces on the Atomic Scale , 1996 .

[168]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[169]  J. Zhang,et al.  Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface , 1997 .

[170]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[171]  A. Shipway,et al.  Gold-Nanoparticle/bis-Bipyridinium Cyclophane-Functionalized Ion-Sensitive Field-Effect Transistors: Novel Assemblies for Sensing of Neurotransmitters , 1999 .

[172]  R. Paolesse,et al.  Optical anisotropy and gas sensing properties of ordered porphyrin films , 2005 .

[173]  Otto S. Wolfbeis,et al.  Materials for fluorescence-based optical chemical sensors , 2005 .

[174]  Jiří Homola,et al.  Multiple surface plasmon spectroscopy for study of biomolecular systems , 2006 .

[175]  S. Wang,et al.  High-sensitivity stark spectroscopy obtained by surface plasmon resonance measurement. , 2000, Analytical chemistry.

[176]  Ryoji Kurita,et al.  On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. , 2006, Analytical chemistry.

[177]  A. Libchaber,et al.  Single-mismatch detection using gold-quenched fluorescent oligonucleotides , 2001, Nature Biotechnology.

[178]  Catherine J. Murphy,et al.  Sensing strategy for lithium ion based on gold nanoparticles , 2002 .

[179]  Maria Q. Feng,et al.  Novel Fiber Optic Accelerometer System Using Geometric Moiré Fringe , 2006 .

[180]  D. Feldheim,et al.  Electronic and Optical Properties of Chemically Modified Metal Nanoparticles and Molecularly Bridged Nanoparticle Arrays , 2000 .

[181]  James F Rusling,et al.  Scanning electrochemical microscopy of living cells. 3. Rhodobacter sphaeroides. , 2002, Analytical chemistry.

[182]  Guodong Liu,et al.  Electrochemical coding technology for simultaneous detection of multiple DNA targets. , 2003, Journal of the American Chemical Society.

[183]  Y. Sung,et al.  PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells , 2006 .

[184]  Lin He,et al.  Nanoparticles for bioanalysis. , 2003, Current opinion in chemical biology.

[185]  Michael Himmelhaus,et al.  Cap-shaped gold nanoparticles for an optical biosensor , 2000 .

[186]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[187]  I. Lisiecki Size, shape, and structural control of metallic nanocrystals. , 2005, The journal of physical chemistry. B.

[188]  Kagan Kerman,et al.  Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. , 2003, Analytical chemistry.

[189]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[190]  J. Storhoff,et al.  Strategies for Organizing Nanoparticles into Aggregate Structures and Functional Materials , 1997 .

[191]  C. Yoon,et al.  Co nanoparticle monolayer prepared by multiple diffusive incorporations onto a pre-existing nanoparticle template , 2007 .

[192]  Michael J. Schöning,et al.  “Playing around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs , 2005, Sensors (Basel, Switzerland).

[193]  Tobias Vossmeyer,et al.  Self-Assembled Gold Nanoparticle/Alkanedithiol Films: Preparation, Electron Microscopy, XPS-Analysis, Charge Transport and Vapor-Sensing Properties , 2003 .

[194]  M. Sastry,et al.  Morphology of BaSO4 Crystals Grown on Templates of Varying Dimensionality: The Case of Cysteine-Capped Gold Nanoparticles (0-D), DNA (1-D), and Lipid Bilayer Stacks (2-D) , 2002 .

[195]  Danfeng Yao,et al.  Surface density dependence of PCR amplicon hybridization on PNA/DNA probe layers. , 2005, Biophysical journal.

[196]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[197]  T Kobayashi,et al.  Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. , 2000, Optics letters.

[198]  Sui Lin,et al.  Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. , 2002, Analytical chemistry.

[199]  A. Hierlemann,et al.  Performances of mass-sensitive devices for gas sensing:  thickness shear mode and surface acoustic wave transducers. , 1996, Analytical chemistry.