Internal failure of anode materials for lithium batteries — A critical review

[1]  N. Wagner,et al.  Performance and failure analysis of full cell lithium ion battery with LiNi0.8Co0.15Al0.05O2 and silicon electrodes , 2019, Journal of Power Sources.

[2]  Zhansheng Guo,et al.  Theoretical and experimental study on the interfacial adhesive properties of graphite electrodes in different charging and aging states , 2019, Carbon.

[3]  F. Wei,et al.  Silicon Carbide as a Protective Layer to Stabilize Si-Based Anodes by Inhibiting Chemical Reactions. , 2019, Nano letters.

[4]  Chengcheng Chen,et al.  Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography , 2019, Electrochimica Acta.

[5]  H. Abruña,et al.  Regulating Key Variables and Visualizing Lithium Dendrite Growth: An Operando X-ray Study. , 2019, Journal of the American Chemical Society.

[6]  D. Wood,et al.  Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder , 2019, Journal of The Electrochemical Society.

[7]  Xuanxuan Bi,et al.  Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries , 2019, Advanced Energy Materials.

[8]  Chenglin Yan,et al.  Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery , 2019, Nature Communications.

[9]  Junhe Yang,et al.  Influence of Current Density on Graphite Anode Failure in Lithium-Ion Batteries , 2019, Journal of The Electrochemical Society.

[10]  Shaofan Li,et al.  Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review , 2018, Acta Mechanica.

[11]  Y. Meng,et al.  Quantifying inactive lithium in lithium metal batteries , 2018, Nature.

[12]  Qiang Zhang,et al.  Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes , 2018, Energy Storage Materials.

[13]  Zhigang Xue,et al.  Ultralight Layer‐by‐Layer Self‐Assembled MoS2‐Polymer Modified Separator for Simultaneously Trapping Polysulfides and Suppressing Lithium Dendrites , 2018, Advanced Energy Materials.

[14]  T. Wada,et al.  Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography , 2018, Nano Energy.

[15]  Linda F. Nazar,et al.  Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries , 2018, Nature Energy.

[16]  Lynden A. Archer,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[17]  Cheng Yan,et al.  Advances in In Situ Techniques for Characterization of Failure Mechanisms of Li‐Ion Battery Anodes , 2018 .

[18]  Jaephil Cho,et al.  Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes , 2018, Nature Communications.

[19]  J. Seminario,et al.  Simulations of a LiF Solid Electrolyte Interphase Cracking on Silicon Anodes Using Molecular Dynamics , 2018 .

[20]  Wenwen Xu,et al.  Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates , 2018 .

[21]  Jiajia Zhu,et al.  Lithium dendrite suppression and cycling efficiency of lithium anode , 2018 .

[22]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[23]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[24]  Ya‐Xia Yin,et al.  Watermelon‐Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium‐Ion Battery Anodes , 2017 .

[25]  N. Sottos,et al.  Electrochemical stiffness in lithium-ion batteries. , 2016, Nature materials.

[26]  Ke Du,et al.  One strategy to enhance electrochemical properties of Ni-based cathode materials under high cut-off voltage for Li-ion batteries , 2016 .

[27]  Jeff Dahn,et al.  A systematic study on the reactivity of different grades of charged Li[Ni x Mn y Co z ]O 2 with electrolyte at elevated temperatures using accelerating rate calorimetry , 2016 .

[28]  Dawei Song,et al.  Facile synthesis of a novel structured Li[Ni0.66Co0.1Mn0.24]O2 cathode material with improved cycle life and thermal stability via ion diffusion , 2016 .

[29]  S. Schougaard A nanoview of battery operation , 2016, Science.

[30]  Martin Z. Bazant,et al.  Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles , 2016, Science.

[31]  Tie-hu Li,et al.  Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries , 2016 .

[32]  Margret Wohlfahrt-Mehrens,et al.  Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries , 2016 .

[33]  K. Stevenson,et al.  Monitoring Volumetric Changes in Silicon Thin-Film Anodes through In Situ Optical Diffraction Microscopy. , 2016, ACS applied materials & interfaces.

[34]  K. Komvopoulos,et al.  Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries , 2016, Nature Communications.

[35]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[36]  Yi Cui,et al.  3D Porous Sponge‐Inspired Electrode for Stretchable Lithium‐Ion Batteries , 2016, Advanced materials.

[37]  Yi Cui,et al.  In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy , 2016 .

[38]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[39]  Guy Marlair,et al.  Safety focused modeling of lithium-ion batteries: A review , 2016 .

[40]  Jun Xu,et al.  State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries , 2016, Scientific Reports.

[41]  A. Bordes,et al.  Multiscale Investigation of Silicon Anode Li Insertion Mechanisms by Time-of-Flight Secondary Ion Mass Spectrometer Imaging Performed on an In Situ Focused Ion Beam Cross Section , 2016 .

[42]  Hyun-Wook Lee,et al.  Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes , 2016, Nature Energy.

[43]  Myung Won Seo,et al.  Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. , 2016, Nano letters.

[44]  Xin-bo Zhang,et al.  Artificial Protection Film on Lithium Metal Anode toward Long‐Cycle‐Life Lithium–Oxygen Batteries , 2015, Advanced materials.

[45]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[46]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[47]  S. H. Tsang,et al.  Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances , 2015 .

[48]  Liangbing Hu,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[49]  N. Dudney,et al.  Structure of Spontaneously Formed Solid-Electrolyte Interphase on Lithiated Graphite Determined Using Small-Angle Neutron Scattering , 2015 .

[50]  M. Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[51]  Yan-li Chen,et al.  Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries , 2015 .

[52]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[53]  Craig B. Arnold,et al.  State of health and charge measurements in lithium-ion batteries using mechanical stress , 2014 .

[54]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[55]  Yu‐Guo Guo,et al.  Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. , 2014, ACS applied materials & interfaces.

[56]  Donghai Wang,et al.  Interpenetrated Gel Polymer Binder for High‐Performance Silicon Anodes in Lithium‐ion Batteries , 2014 .

[57]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[58]  Yi Cui,et al.  In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles , 2014 .

[59]  Amartya Mukhopadhyay,et al.  Deformation and stress in electrode materials for Li-ion batteries , 2014 .

[60]  Nancy R. Sottos,et al.  In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling , 2014 .

[61]  Mengyun Nie,et al.  High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly. , 2014, ACS applied materials & interfaces.

[62]  Yi Cui,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[63]  Swastika Banerjee,et al.  Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study , 2014 .

[64]  C. Yuan,et al.  Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. , 2014, Environmental science & technology.

[65]  C. J. Kerr,et al.  Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy , 2014, Nature Communications.

[66]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[67]  D. J. Lee,et al.  Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. , 2013, ACS applied materials & interfaces.

[68]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[69]  Delphine Riu,et al.  A review on lithium-ion battery ageing mechanisms and estimations for automotive applications , 2013 .

[70]  Zhigang Suo,et al.  Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. , 2013, Nano letters.

[71]  Ting Zhu,et al.  Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries , 2013 .

[72]  Xiangyang Zhou,et al.  Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries , 2013 .

[73]  Jiajun Li,et al.  Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. , 2013, ACS nano.

[74]  J. Fergus,et al.  Lithium Ion Battery Anode Aging Mechanisms , 2013, Materials.

[75]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[76]  Justin T. Harris,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[77]  Meihua Jin,et al.  Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. , 2013, ACS nano.

[78]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[79]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[80]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[81]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[82]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[83]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[84]  Lin Gu,et al.  Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. , 2012, Journal of the American Chemical Society.

[85]  Chunsheng Wang,et al.  Sponge-like porous carbon/tin composite anode materials for lithium ion batteries , 2012 .

[86]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[87]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[88]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[89]  D. Abraham,et al.  Real-Time Stress Measurements in Lithium-ion Battery Negative-electrodes , 2012, 1201.2155.

[90]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[91]  M. Meador,et al.  Surface oxidation study of single wall carbon nanotubes , 2011, Nanotechnology.

[92]  Zhi Yang,et al.  Novel Three‐Dimensional Mesoporous Silicon for High Power Lithium‐Ion Battery Anode Material , 2011 .

[93]  Minato Egashira,et al.  Influence of particle size on the self-discharge behavior of graphite electrodes in lithium-ion batteries , 2011 .

[94]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[95]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[96]  Reza S. Yassar,et al.  Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery , 2011 .

[97]  Ting Zhu,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2012, ACS nano.

[98]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[99]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[100]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[101]  Amartya Mukhopadhyay,et al.  Thin film graphite electrodes with low stress generation during Li-intercalation , 2011 .

[102]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[103]  Ignacio Cameán,et al.  Graphitized boron-doped carbon foams: Performance as anodes in lithium-ion batteries , 2011 .

[104]  John P. Sullivan,et al.  Lithium Fiber Growth on the Anode in a Nanowire Lithium Ion Battery During Charging , 2011 .

[105]  Yi Cui,et al.  Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode , 2011 .

[106]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[107]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[108]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[109]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[110]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[111]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[112]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[113]  M. Armand,et al.  Building better batteries , 2008, Nature.

[114]  Rudolf Holze,et al.  Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery , 2007 .

[115]  Seung M. Oh,et al.  Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode , 2007 .

[116]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[117]  Mo-hua Yang,et al.  Study the fading mechanism of LiMn2O4 battery with spherical and flake type graphite as anode materials , 2005 .

[118]  Jeong Yong Lee,et al.  Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries , 2004 .

[119]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[120]  T. Sogabe,et al.  Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries , 2001 .

[121]  J.-N. Chazalviel,et al.  In situ study of dendritic growth inlithium/PEO-salt/lithium cells , 1998 .

[122]  Nathan K. Fritz,et al.  Lithiation Induced Stress Concentration for 3D Metal Scaffold Structured Silicon Anodes , 2019, Journal of The Electrochemical Society.

[123]  Seungjun Lee,et al.  Mechanical Failure Analysis of Graphite Anode Particles with PVDF Binders in Li-Ion Batteries , 2018 .

[124]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[125]  Yi Cui,et al.  Mechanical behavior of electrochemically lithiated silicon , 2015 .

[126]  W. Lai,et al.  Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions , 2014 .

[127]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[128]  B. Lucht,et al.  Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes , 2012 .

[129]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[130]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[131]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[132]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .