Extreme elastic anisotropy of cementite, Fe3C: first-principles calculations and experimental evidence.

First-principles results for the full set of elastic constants (stiffnesses) cij of cementite, Fe3C, revealed an extreme elastic anisotropy with a very small c44 amounting to only about 1/10 of c55 and c66. Synchrotron X-ray diffraction stress measurements were performed on Fe3C layers grown on α-Fe exhibiting a planar state of compressive residual stress. These data exhibit a characteristic hkl-dependence of the stress-induced reflection shifts, and provide experimental proof for the extreme elastic anisotropy of Fe3C.

[1]  M. Fejer,et al.  Nonlinear elasticity in proper ferroelastics , 1983 .

[2]  E. Kisi,et al.  Measurement of single-crystal elastic constants by neutron diffraction from polycrystals , 1999 .

[3]  H. Nolle,et al.  On some physical properties of cementite , 1959 .

[4]  H. Ledbetter Elastic properties of face-centered-cubic plutonium , 1976 .

[5]  D. Fruchart,et al.  Etudes structurales de compose´s de type ce´mentite: Effet de l'hydroge`ne sur Fe3C suivi par diffraction neutronique. Spectrome´trie Mo¨ssbauer sur FeCo2B et Co3B dope´s au57Fe , 1984 .

[6]  C. Esling,et al.  Crystalline, electronic, and magnetic structures of θ-Fe3C, χ-Fe5C2, and η-Fe2C from first principle calculation , 2006 .

[7]  A. Leineweber,et al.  Formation of massive cementite layers on iron by ferritic carburising in the additional presence of ammonia , 2006 .

[8]  J. Li,et al.  Compression of Fe3C to 30 GPa at room temperature , 2002 .

[9]  Shun-Li Shang,et al.  First-principles elastic constants of α- and θ-Al2O3 , 2007 .

[10]  David P. Dobson,et al.  Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction , 2004 .

[11]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[12]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[13]  W. G. Marshall,et al.  The effect of ferromagnetism on the equation of state of Fe3C studied by first-principles calculations , 2002 .

[14]  A. Heuer,et al.  X-ray elastic constants for α-Al2O3 , 2006 .

[15]  T. Okamoto,et al.  Young's modulus and thermal expansion of pure iron-cementite alloy castings , 1987 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  Structural, elastic and electronic properties of Fe3C from first-principles , 2007, 0711.1528.

[18]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  Zhen Liu,et al.  Elastic anisotropy of γ'-Fe4N and elastic grain interaction in γ'-Fe4N1-y layers on α-Fe: first-principles calculations and diffraction stress measurements , 2007 .

[21]  Robert W. Cahn,et al.  Materials science: Melting from within , 2001, Nature.

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  G. A. Jeffrey,et al.  On the cementite structure , 1965 .

[24]  U. Welzel,et al.  Diffraction stress analysis of macroscopically elastically anisotropic specimens: On the concepts of diffraction elastic constants and stress factors , 2003 .

[25]  H. Bhadeshia Worked examples in the geometry of crystals , 1987 .

[26]  B. Johansson,et al.  Carbon in iron phases under high pressure , 2005 .

[27]  Arnold C. Vermeulen,et al.  Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction , 2005 .

[28]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[29]  Y. S. Touloukian Thermal Expansion: Metallic Elements and Alloys , 1975 .