Hybrid LBM-FVM and LBM-MCM Methods for Fluid Flow and Heat Transfer Simulation

The fluid flow and heat transfer problems encountered in industry applications span into different scales and there are different numerical methods for different scales problems. It is not possible to use single scale method to solve problems involving multiple scales. Multiscale methods are needed to solve problems involving multiple scales. In this chapter, meso-macro-multiscale methods are developed by combining various single scale numerical methods, including lattice Boltzmann method (LBM), finite volume method (FVM) and Monte Carlo method (MCM). Macroscale methods include FVM, while LBM and MCM belongs to mesoscale methods. Two strategies exist in combing these numerical methods. For the first one, the whole domain is divided into multiple subdomains and different domains use various numerical methods. Message passing among subdomains decides the accuracy of this type of multiscale numerical method. For the second one, various parameters are solved with different numerical methods. These two types of multiscale methods are both discussed in this chapter.

[1]  M. Hortmann,et al.  Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions , 1990 .

[2]  Ahmed Mezrhab,et al.  Hybrid lattice-Boltzmann finite-difference simulation of convective flows , 2004 .

[3]  Samuel Graham,et al.  Multiscale Lattice Boltzmann Modeling of Phonon Transport in Crystalline Semiconductor Materials , 2010 .

[4]  Yuwen Zhang,et al.  Double MRT thermal lattice Boltzmann method for simulating natural convection of low Prandtl number fluids , 2016, 1601.04633.

[5]  B. Mondal,et al.  The lattice Boltzmann method and the finite volume method applied to conduction–radiation problems with heat flux boundary conditions , 2009 .

[6]  Chang Shu,et al.  A hybrid FVM–LBM method for single and multi‐fluid compressible flow problems , 2009 .

[7]  Abdulmajeed A. Mohamad,et al.  A critical evaluation of force term in lattice Boltzmann method, natural convection problem , 2010 .

[8]  H. Hoefsloot,et al.  International Journal for Numerical Methods in Fluids Lattice-boltzmann and Finite Element Simulations of Fluid Flow in a Smrx Static Mixer Reactor , 2022 .

[9]  Subhash C. Mishra,et al.  Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method , 2007, J. Comput. Phys..

[10]  P. Koumoutsakos,et al.  Hybrid atomistic-continuum method for the simulation of dense fluid flows , 2005 .

[11]  Li Chen,et al.  Coupling of finite volume method and thermal lattice Boltzmann method and its application to natural convection , 2011 .

[12]  P Koumoutsakos,et al.  Coupling lattice Boltzmann and molecular dynamics models for dense fluids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Chuguang Zheng,et al.  A coupled lattice BGK model for the Boussinesq equations , 2002 .

[14]  Orestis Malaspinas,et al.  Straight velocity boundaries in the lattice Boltzmann method. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Subhash C. Mishra,et al.  Lattice Boltzmann method applied to the solution of the energy equations of the transient conduction and radiation problems on non-uniform lattices , 2008 .

[16]  Li Chen,et al.  Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes , 2013, J. Comput. Phys..

[17]  C. Prakash,et al.  Numerical Heat Transfer (T. M. Shin) , 1986 .

[18]  Yuwen Zhang,et al.  Numerical Simulation of Melting Problems Using the Lattice Boltzmann Method with the Interfacial Tracking Method , 2015 .

[19]  Li Chen,et al.  Evaluation of the coupling scheme of FVM and LBM for fluid flows around complex geometries , 2011 .

[20]  Jonas Latt,et al.  Hydrodynamic limit of lattice Boltzmann equations , 2007 .

[21]  J. Howell The Monte Carlo Method in Radiative Heat Transfer , 1998 .

[22]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[23]  Qisu Zou,et al.  A improved incompressible lattice Boltzmann model for time-independent flows , 1995 .

[24]  J. Howell,et al.  Advanced Heat and Mass Transfer , 2010 .

[25]  Mo Yang,et al.  A coupled lattice Boltzmann and finite volume method for natural convection simulation , 2014 .

[26]  Eirik Grude Flekkøy,et al.  Hybrid model for combined particle and continuum dynamics , 2000 .

[27]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Yuwen Zhang,et al.  HYBRID LATTICE BOLTZMANN AND FINITE VOLUME METHODS FOR FLUID FLOW PROBLEMS , 2014 .

[29]  Hudong Chen,et al.  A Lattice-Boltzmann / Finite-Difference Hybrid Simulation of Transonic Flow , 2009 .

[30]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[31]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[32]  Yuwen Zhang,et al.  Hybrid Lattice Boltzmann and Finite Volume Method for Natural Convection , 2014 .

[33]  So-Hsiang Chou,et al.  FINITE VOLUME SCHEME FOR THE LATTICE BOLTZMANN METHOD ON UNSTRUCTURED MESHES , 1999 .

[34]  Yuwen Zhang,et al.  A HYBRID LATTICE BOLTZMANN AND MONTE CARLO METHOD FOR NATURAL CONVECTION SIMULATION , 2015 .

[35]  Bastien Chopard,et al.  Lattice Boltzmann model for melting with natural convection , 2008 .

[36]  George E. Karniadakis,et al.  Triple-decker: Interfacing atomistic-mesoscopic-continuum flow regimes , 2009, J. Comput. Phys..

[37]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[38]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[39]  Farid F. Abraham DYNAMICALLY SPANNING THE LENGTH SCALES FROM THE QUANTUM TO THE CONTINUUM , 2000 .

[40]  Mo Yang,et al.  Lattice Boltzmann method simulation of 3-D natural convection with double MRT model , 2016 .

[41]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[42]  E. Sparrow,et al.  Handbook of Numerical Heat Transfer , 1988 .

[43]  Lars Schiøtt Sørensen,et al.  An introduction to Computational Fluid Dynamics: The Finite Volume Method , 1999 .