Least trimmed squares in nonlinear regression under dependence

High breakdown-point regression estimators protect against large errors both in explanatory and dependent variables. The least trimmed squares (LTS) estimator is one of frequently used, easily understandable and, from the robustness point of view, thoroughly studied high breakdown-point estimators. In spite of its increasing popularity and a number of applications, very little is known about its asymptotic behaviour in nonlinear, panel-data, and time-series regression after two decades of its existence. In this context, we derive and discuss all important asymptotic properties of LTS, including the asymptotic normality and variance, under mild β-mixing conditions.

[1]  Er-Wei Bai A random least-trimmed-squares identification algorithm , 2003, Autom..

[2]  José Julio Espina Agulló New algorithms for computing the least trimmed squares regression estimator , 2001 .

[3]  Georg Ch. Pflug,et al.  Mathematical statistics and applications , 1985 .

[4]  Peter Rousseeuw,et al.  Econometric Applications of High-Breakdown Robust Regression Techniques , 2017, 1709.00181.

[5]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[6]  T. Amemiya Non-linear regression models , 1983 .

[7]  Victoria Zinde-Walsh ASYMPTOTIC THEORY FOR SOME HIGH BREAKDOWN POINT ESTIMATORS , 2002, Econometric Theory.

[8]  J. A. Vísek The Least Trimmed Squares – Random Carriers , 1999 .

[9]  The influence functions for the least trimmed squares and the least trimmed absolute deviations estimators , 1994 .

[10]  E. Ronchetti,et al.  A journey in single steps: robust one-step M-estimation in linear regression , 2002 .

[11]  D. Andrews Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables , 1988, Econometric Theory.

[12]  Shinichi Sakata,et al.  HIGH BREAKDOWN POINT CONDITIONAL DISPERSION ESTIMATION WITH APPLICATION TO S&P 500 DAILY RETURNS VOLATILITY , 1998 .

[13]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[14]  PETER J. ROUSSEEUW,et al.  Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.

[15]  A. Stromberg,et al.  The Least Trimmed Differences Regression Estimator and Alternatives , 2000 .

[16]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[17]  Jonathan R.W. Temple,et al.  Robustness Tests of the Augmented Solow Model , 1998 .

[18]  D. Pollard Asymptotics via Empirical Processes , 1989 .

[19]  David Suter,et al.  Using symmetry in robust model fitting , 2003, Pattern Recognit. Lett..

[20]  P. Rousseeuw 5 Introduction to positive-breakdown methods , 1997 .

[21]  Kang-Mo Jung Multivariate least-trimmed squares regression estimator , 2005, Comput. Stat. Data Anal..

[22]  J. Davidson Stochastic Limit Theory , 1994 .

[23]  Jan Ámos Víšek,et al.  Least trimmed squares , 2000 .

[24]  Donald W. K. Andrews,et al.  An introduction to econometric applications of empirical process theory for dependent random variables , 1993 .

[25]  G. Willems,et al.  Small sample corrections for LTS and MCD , 2002 .

[26]  O. Hössjer Rank-Based Estimates in the Linear Model with High Breakdown Point , 1994 .

[27]  Marc G. Genton,et al.  Comprehensive definitions of breakdown points for independent and dependent observations , 2003 .

[28]  D. Pollard Convergence of stochastic processes , 1984 .

[29]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[30]  M. Padberg,et al.  Least trimmed squares regression, least median squares regression, and mathematical programming , 2002 .

[31]  Peter J. Knez,et al.  On The Robustness of Size and Book‐to‐Market in Cross‐Sectional Regressions , 1997 .

[32]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[33]  Jana Jurecková,et al.  Regression quantiles and trimmed least squares estimator under a general design , 1984, Kybernetika.

[34]  Jan Ámos Víšek,et al.  On the diversity of estimates , 2000 .

[35]  R. Tsay,et al.  Outliers in multivariate time series , 2000 .

[36]  Ming Ye,et al.  Optical flow from a least-trimmed squares based adaptive approach , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[37]  XploRe® - Application Guide , 2000 .

[38]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[39]  M. A. Arcones,et al.  Central limit theorems for empirical andU-processes of stationary mixing sequences , 1994 .

[40]  V. Yohai,et al.  A Minimax-Bias Property of the Least $\alpha$-Quantile Estimates , 1993 .

[41]  D. Ruppert,et al.  Breakdown in Nonlinear Regression , 1992 .

[42]  Douglas M. Hawkins,et al.  Applications and algorithms for least trimmed sum of absolute deviations regression , 1999 .

[43]  Pavel Cizek Asymptotics of Least Trimmed Squares Regression , 2004 .

[44]  C. Croux,et al.  Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator , 1999 .

[45]  Bin Yu RATES OF CONVERGENCE FOR EMPIRICAL PROCESSES OF STATIONARY MIXING SEQUENCES , 1994 .

[46]  H. White,et al.  NONLINEAR REGRESSION ON CROSS-SECTION DATA , 1980 .

[47]  Stefan Van Aelst,et al.  Fast and robust bootstrap for LTS , 2005, Comput. Stat. Data Anal..

[48]  A. Stromberg Computation of high breakdown nonlinear regression parameters , 1993 .

[49]  Charles F. Manski,et al.  Analog estimation methods in econometrics , 1988 .

[50]  Morgan Kelly Do Noise Traders Influence Stock Prices , 1997 .