High-speed visual servoing of a 6-d.o.f. manipulator using multivariable predictive control

This paper presents a new approach to model and control high-speed 6-d.o.f. visual servo loops. The modeling and control strategy take into account the dynamics of the velocity-controlled 6-d.o.f. manipulator as well as a simplified model of the camera and acquisition system in order to significantly increase the bandwidth of the servo loop. Multi-input multi-output generalized predictive control (GPC) is used to optimally control the visual loop with respect to the proposed dynamical model. The predictive feature of the GPC is used for optimal trajectory following in Cartesian space. Experimental results on a 6-d.o.f. industrial robot are presented that validate the proposed model. The visual sensor used in the experiments is a high-speed camera that acquires 120 non-interlaced images. Using this camera, a sampling rate of 120 Hz is achieved for the visual loop. Furthermore, a precise synchronization method is used to reduce the delays due to image transfer and processing. The experiments show a drastic improvement of the loop performance with respect to more classical control strategies for 6-d.o.f. visual servo loops.

[1]  Peter I. Corke,et al.  Dynamic effects in visual closed-loop systems , 1996, IEEE Trans. Robotics Autom..

[2]  Jacques Gangloff,et al.  High speed visual servoing of a 6 DOF manipulator using MIMO predictive control , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[3]  Masatoshi Ishikawa,et al.  1 ms column parallel vision system and its application of high speed target tracking , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[5]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[6]  Heinz Unbehauen,et al.  Study of predictive controller tuning methods , 1997, Autom..

[7]  Eduardo F. Camacho,et al.  Introduction to Model Based Predictive Control , 1999 .

[8]  Y. Nakabo,et al.  Parallel Vision System and It ' s Application of High Speed Target Tracking , 2000 .

[9]  Nikolaos Papanikolopoulos Controlled active vision , 1992 .

[10]  Rafael Kelly,et al.  Robust asymptotically stable visual servoing of planar robots , 1996, IEEE Trans. Robotics Autom..

[11]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[12]  Jacques Gangloff,et al.  Visual servoing of a 6-DOF manipulator for unknown 3-d profile following , 1999, IEEE Trans. Robotics Autom..

[13]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[14]  Peter K. Allen,et al.  Automated tracking and grasping of a moving object with a robotic hand-eye system , 1993, IEEE Trans. Robotics Autom..

[15]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[16]  Yoshiki Uchikawa,et al.  Visual Servoing with Hand-Eye Manipulator-Optimal Control Approach , 1996 .

[17]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[18]  A. Barabanov Adaptive &Optimal Control for SISO Plant , 1995 .

[19]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[20]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[21]  Peter Corke,et al.  Visual Control of Robots: High-Performance Visual Servoing , 1996 .

[22]  M.S. de Queiroz,et al.  Robust visual-servo control of robot manipulators in the presence of uncertainty , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[23]  Masatoshi Ishikawa,et al.  High speed grasping using visual and force feedback , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[24]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..