Combined heat, air, moisture modelling: A look back, how, of help?

Abstract Trials to model combined heat, air, moisture transfer in and through building assemblies started in the 1930-ties, when the first methodologies surfaced that coupled steady state vapour diffusion to steady state heat transport. Thanks to H. Glaser and his papers published end of the 1950-ties, that diffusion/conduction approach gained physical correctness. Some 13 years later, capillary suction was added as transport mechanism. At that time, computer software already helped solving models that linked transient heat transport to moisture transfer by diffusion and suction in composite assemblies. Later, air got included as carrier for heat and vapour while increased computer power allowed analyzing two- and three-dimensional geometries. After 2000, the turn from the assembly to the whole building level gained attention. Although the theory looks well established and the computer software, actually available, quite complete, still it does not always help explaining and curing the damage cases, encountered in practice. As built complicates things and physics related pitfalls remain: simulations base on too simple drawings, inability to correctly include airflow, overlooking pressure and gravity driven water flow, uncertainty in material properties, difficulties to grasp the real initial and boundary conditions, the complexity of the envelope/building interactions, etc.

[1]  A. Luikov Heat and Mass Transfer in Capillary-Porous Bodies , 2014 .

[2]  Von der Fakultät Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten , 1994 .

[3]  Vasco Peixoto De Freitas,et al.  Moisture migration in building walls—Analysis of the interface phenomena , 1996 .

[4]  M. J. Cunningham Modelling of moisture transfer in structures—III. A comparison between the numerical model SMAHT and field data , 1994 .

[5]  van Fjr Fabien Mook,et al.  Driving rain on building envelopes , 2003 .

[6]  Jesper Arfvidsson Moisture Transport in Porous Media. Modelling Based on Kirchhoff Potentials , 1998 .

[7]  Dominique Derome,et al.  Rainwater runoff from building facades: A review , 2013 .

[8]  J. van der Kooi Moisture transport in cellular concrete roofs , 1971 .

[9]  Hugo S. L. Hens,et al.  Building Physics - Heat, Air and Moisture: Fundamentals and Engineering Methods with Examples and Exercises , 2008 .

[10]  Leo L Pel,et al.  MOISTURE TRANSPORT IN POROUS BUILDING MATERIALS , 1996 .

[11]  Paul Fazio,et al.  An investigation of moisture buffering performance of wood paneling at room level and its buffering effect on a test room , 2012 .

[12]  Dominique Derome,et al.  High-resolution field measurements of wind-driven rain on an array of low-rise cubic buildings , 2014 .

[13]  Ocg Olaf Adan,et al.  On the fungal defacement of interior finishes , 1994 .

[14]  Hugo Hens Condensation in concrete flat roofs , 1978 .

[15]  Jan G. N. Lecompte,et al.  Influence of Natural Convection in an Insulated Cavity on the Thermal Performance of a Wall , 1990 .

[16]  Bje Bert Blocken,et al.  A combined CFD–HAM approach for wind-driven rain on building facades , 2007 .

[17]  Hugo Hens,et al.  Fungal Defacement in Buildings: A Performance Related Approach , 1999 .

[18]  S. Araya Interzonal air and moisture transport through large horizontal openings : an integrated experimental and numerical study , 2009 .

[19]  T. Defraeye,et al.  An adjusted temperature wall function for turbulent forced convective heat transfer for bluff bodies , 2011 .

[20]  Jan Carmeliet,et al.  Modelling Unsaturated Moisture Transport in Heterogeneous Limestone , 2003 .

[21]  J. Mier,et al.  Field evidences and theoretical analysis of the gravity-driven wetting front instability of water runoffs on concrete structures , 1997 .

[22]  Xiaochuan Qiu Moisture transport across interfaces between building materials , 2003 .

[23]  M. D. Paepe,et al.  On coupling 1D non-isothermal heat and mass transfer in porous materials with a multizone building energy simulation model , 2010 .

[24]  Hugo S. L. C. Hens Vapor Permeability Measurements: Impact of Cup Sealing, Edge Correc-tion, Flow Direction and Mean Relative Humidity, , 2009 .

[25]  Juha Vinha Hygrothermal Performance of Timber-Framed External Walls in Finnish Climatic Conditions: A Method for Determining the Sufficient Water Vapour Resistance of the Interior Lining of a Wall Assembly , 2007 .

[26]  Anton TenWolde Moisture Transfer Through Materials and Systems in Buildings , 1989 .

[27]  Hjp Harold Brocken Moisture transport in brick masonry : the grey area between bricks , 1998 .

[28]  Pernilla Johansson,et al.  Validation of critical moisture conditions for mould growth on building materials , 2013 .

[29]  Johnny Kronvall Air flows in building components , 1980 .

[30]  Paul Fazio,et al.  Determination of indoor humidity profile using a whole-building hygrothermal model , 2011 .

[31]  O. Ljungqvist Guidelines and practice: the need to determine compliance. , 2010, JPEN. Journal of parenteral and enteral nutrition.

[32]  Donald A. Parsons,et al.  The relation of raindrop-size to intensity , 1943 .

[33]  Hugo Hens Applied Building Physics: Boundary Conditions, Building Performance and Material Properties , 2010 .

[34]  Robert E. Wilson,et al.  Fundamentals of momentum, heat, and mass transfer , 1969 .

[35]  M. J. Cunningham,et al.  A field study of the moisture performance of roofs of occupied newly constructed timber framed houses , 1994 .

[36]  Arnold Janssens,et al.  Experimental validation and sensitivity analysis of a coupled BES—HAM model , 2010 .

[37]  Jelle Langmans,et al.  Feasibility of Exterior Air Barriers in Timber Frame Construction (Haalbaarheid van externe luchtschermen in houtskeletbouw) , 2010 .

[38]  Gunilla Bok,et al.  The effect of cyclic moisture and temperature on mould growth on wood compared to steady state conditions , 2013 .

[39]  Ruut Hannele Peuhkuri,et al.  Development of an improved model for mould growth: Laboratory and field experiments , 2008 .

[40]  Staf Roels,et al.  Glued concrete block veneers with open head joints: rain leakage and hygrothermal performance , 2005 .

[41]  Von der Fakultät Feuchtetransport- und Speicherkoeffizienten poröser mineralischer Baustoffe. Theoretische Grundlagen und neue Meßtechniken. , 1995 .

[42]  A.-S. Poupeleer,et al.  Transport and crystallization of dissolved salts in cracked porous building materials , 2007 .

[43]  Arnold Janssens,et al.  Development of indoor climate classes to assess humidity in dwellings , 2003 .

[44]  Arnold Janssens,et al.  Heat and moisture response of vented and compact cathedral ceilings: A test house evaluation , 1999 .

[45]  Staf Roels,et al.  Review of mould prediction models and their influence on mould risk evaluation , 2012 .

[46]  John Straube,et al.  Moisture control and enclosure wall systems , 1998 .

[47]  Ralf Klein,et al.  Hygrothermal risks of using exterior air barrier systems for highly insulated light weight walls: A laboratory investigation , 2012 .

[48]  J. Carmeliet,et al.  The influence of soil moisture transfer on building heat loss via the ground , 2004 .

[49]  Kurt Kielsgaard Hansen,et al.  Sorption isotherms: A catalogue , 1986 .

[50]  A. Best,et al.  The size distribution of raindrops , 1950 .

[51]  J. R. Philip,et al.  Moisture movement in porous materials under temperature gradients , 1957 .

[52]  Schierhaum Krischer, O., und K. Krö: Trocknungstechnik. I. Band: Krischer, O.:Die wissenschaftlichen Grundlagen der Trock- nungstechnik. 2., erweiterte Auflage. Springer-Verlag, Berlin, Gottingen, Heidelberg 1963. Abbildungen und 4 Tafeln. XXIV, 491 Seiten (Gr.-8°. Preis: Ganzleinen DM 69.60 , 1964 .

[53]  Dominique Derome,et al.  CFD simulation and validation of wind-driven rain on a building facade with an Eulerian multiphase model , 2013 .

[54]  Hans Janssen,et al.  Thermal diffusion of water vapour in porous materials: Fact or fiction? , 2011 .

[55]  J. J. Fourier,et al.  The Analytical Theory of Heat , 2009 .

[56]  Staf Roels,et al.  Rain water runoff from porous building facades : implementation and application of a first-order runoff model coupled to a HAM model , 2013 .

[57]  Hua Ge,et al.  Influence of moisture load profiles on moisture buffering potential and moisture residuals of three groups of hygroscopic materials , 2014 .

[58]  Carsten Rode,et al.  Combined heat and moisture transfer in building constructions , 1990 .

[59]  John Straube,et al.  Rain Control and Design Strategies , 1999 .

[60]  Arnold Janssens,et al.  Reliable control of interstitial condensation in lightweight roof systems , 2001 .

[61]  Mark Bomberg Moisture flow through porous building materials , 1974 .

[62]  Sven Thelandersson,et al.  Mould resistance design (MRD) model for evaluation of risk for microbial growth under varying climate conditions , 2013 .

[63]  Frank B. Rowley,et al.  Condensation of Moisture and Its Relation to Building Construction and Operation , 2013 .

[64]  Jan Carmeliet,et al.  A simplified numerical model for rainwater runoff on building facades: Possibilities and limitations , 2012 .

[65]  Wolfgang Zillig,et al.  Moisture Transport in Wood Using a Multiscale Approach (Vocht transport in hout op basis van een multischaal benadering) , 2009 .

[66]  Dominique Derome,et al.  Cyclic Temperature-Gradient-Driven Moisture Transport in Walls with Wetted Masonry Cladding , 2007 .

[67]  M. J. Cunningham Modelling of moisture transfer in structures—I. A description of a finite-difference nodal model , 1990 .

[68]  Hugo S. L. C. Hens Performance Based Building Design 2: From Timber-framed Construction to Partition Walls , 2012 .

[69]  Dominique Derome,et al.  Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements , 2014 .

[70]  Göran Fagerlund General method for calculation of equilibrium shrinkage of porous and brittle materials : paper presented at the 2nd international CIB/RILEM symposium on moisture problems in buildings, Rotterdam, Sept. 10 to 12, 1974 , 1975 .