The Pearson product‐moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms

A database of DNA fingerprint profiles from permanently established human and animal cell lines was prepared with a computer program originally designed for numerical taxonomy of bacteria. Identifications of cell line DNA profiles were performed, both by the Pearson product‐moment correlation coefficient and by band matching. Under the conditions used the Pearson product‐moment correlation coefficient was consistently more reliable.

[1]  E. Hoal-van Helden,et al.  Cross-contamination of human esophageal squamous carcinoma cell lines detected by DNA fingerprint analysis. , 1988, Cancer research.

[2]  S. O’Brien,et al.  Application of DNA fingerprints for cell-line individualization. , 1990, American journal of human genetics.

[3]  R. Y. Nishimi Forensic DNA analysis: scientific, legal, and social issues. , 1992, Cancer investigation.

[4]  David J. Werrett,et al.  Forensic application of DNA ‘fingerprints’ , 1985, Nature.

[5]  H. Drexler,et al.  Differences in DNA fingerprints of continuous leukemia-lymphoma cell lines from different sources. , 1992, Leukemia.

[6]  Swee Lay Thein,et al.  Hypervariable ‘minisatellite’ regions in human DNA , 1985, Nature.

[7]  D. Kinzel,et al.  Coamplification of simple repetitive DNA fingerprint fragments and the EGFR gene in human gliomas , 1991, Genes, chromosomes & cancer.

[8]  J. J. Kearney,et al.  Tracking the violent criminal offender through DNA typing profiles--a national database system concept. , 1991, EXS.

[9]  D. de Jong,et al.  Somatic changes in B-lymphoproliferative disorders (B-LPD) detected by DNA-fingerprinting. , 1988, British Journal of Cancer.

[10]  A J Jeffreys,et al.  DNA "fingerprints" and segregation analysis of multiple markers in human pedigrees. , 1986, American journal of human genetics.

[11]  L. Peltonen,et al.  Differences in DNA-fingerprints between remission and relapse in childhood acute lymphoblastic leukemia. , 1988, Leukemia research.

[12]  B Budowle,et al.  Fixed-bin analysis for statistical evaluation of continuous distributions of allelic data from VNTR loci, for use in forensic comparisons. , 1991, American journal of human genetics.

[13]  W. Amos,et al.  DNA fingerprinting and 'scientific' whaling , 1988, Nature.

[14]  B. White,et al.  Application of DNA fingerprinting to the recovery program of the endangered Puerto Rican parrot. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Boag,et al.  Sizing bands on autoradiograms: A study of precision for scoring DNA fingerprints , 1991, Electrophoresis.

[16]  M. Schmid,et al.  Digoxigenated oligonucleotide probes specific for simple repeats in DNA fingerprinting and hybridization in situ , 1989, Human Genetics.

[17]  H. Zischler,et al.  Optimized oligonucleotide probes for DNA fingerprinting , 1988, Electrophoresis.

[18]  Eric S. Lander,et al.  DNA fingerprinting on trial , 1989, Nature.

[19]  J. Thacker,et al.  Fingerprinting cell lines: Use of human hypervariable DNA probes to characterize mammalian cell cultures , 1988, Somatic cell and molecular genetics.

[20]  C. Ezzell Hospital workers have AIDS virus , 1987, Nature.

[21]  O. Issinger,et al.  Increased detectability of somatic changes in the DNA from human tumours after probing with “synthetic” and “genome-derived” hypervariable multilocus probes , 1989, Human Genetics.

[22]  G. Stacey,et al.  The quality control of cell banks using DNA fingerprinting. , 1991, EXS.

[23]  C. Carbone,et al.  Analysis of chimerism after bone marrow transplantation using specific oligonucleotide probes. , 1992, Bone Marrow Transplantation.

[24]  I. W. EVETT,et al.  DNA fingerprinting on trial , 1989, Nature.

[25]  K. Grzeschik,et al.  Dissecting (CAC)5/(GTG)5 multilocus fingerprints from man into individual locus-specific, hypervariable components. , 1992, Genomics.

[26]  A. Jeffreys,et al.  Characterization of a panel of highly variable minisatellites cloned from human DNA , 1987, Annals of human genetics.

[27]  Y. Nakamura,et al.  Variable number of tandem repeat (VNTR) markers for human gene mapping. , 1987, Science.

[28]  I W Evett,et al.  A discussion of the robustness of methods for assessing the evidential value of DNA single locus profiles in crime investigations , 1991, Electrophoresis.

[29]  Alan Doyle,et al.  DNA fingerprinting transforms the art of cell authentication , 1992, Nature.

[30]  S. Tonegawa,et al.  Functional expression of a microinjected Edα gene in C57BL/6 transgenic mice , 1985, Nature.

[31]  P. Cregan,et al.  Length polymorphisms of simple sequence repeat DNA in soybean. , 1992, Genetics.

[32]  L. Roewer,et al.  DNA Fingerprinting with the oligonucleotide probe (CAC)5/(GTG)5: somatic stability and germline mutations , 1989, Human Genetics.

[33]  C. Lenzner,et al.  Monitoring genomic alterations with a panel of oligonucleotide probes specific for various simple repeat motifs , 1991, Electrophoresis.

[34]  S. Ohno,et al.  Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[35]  David J. Werrett,et al.  An evaluation of DNA fingerprinting for forensic purposes , 1987 .

[36]  D. Parkin,et al.  Demographic study of a wild house sparrow population by DNA fingerprinting , 1987, Nature.

[37]  B Brinkmann,et al.  Report of a European collaborative exercise comparing DNA typing results using a single locus VNTR probe. , 1991, Forensic science international.

[38]  M. Costas Numerical analysis of sodium dodecyl sulphatepolyacrylamide gel electrophoretic protein patterns for the classification, identification and typing of medically important bacteria , 1990, Electrophoresis.

[39]  P Gill,et al.  Databases, quality control and interpretation of DNA profiling in the Home Office Forensic Science Service , 1991, Electrophoresis.

[40]  P Gill,et al.  Interpretation of DNA profiles using a computerised database , 1990, Electrophoresis.

[41]  P. Vandamme,et al.  Interlaboratory comparative study of the numerical analysis of one‐dimensional sodium dodecyl sulphate‐polyacrylamide gel electrophoretic protein patterns of Campylobacter strains , 1990, Electrophoresis.

[42]  A. Jeffreys,et al.  Individual-specific ‘fingerprints’ of human DNA , 1985, Nature.

[43]  A. Jeffreys,et al.  Detection of somatic changes in human cancer DNA by DNA fingerprint analysis. , 1987, British Journal of Cancer.

[44]  P. Greenaway,et al.  Establishment and characterization of a human CD4 positive cell bank for HIV related studies. , 1990, Biologicals : journal of the International Association of Biological Standardization.

[45]  A. C. Wood,et al.  Numerical analysis of electrophoretic protein patterns of Providencia rettgeri strains from human faeces, urine and other specimens. , 1989, The Journal of applied bacteriology.

[46]  B Brinkmann,et al.  A report of an international collaborative experiment to demonstrate the uniformity obtainable using DNA profiling techniques. , 1992, Forensic science international.