Representing graphs implicitly using almost optimal space

Abstract How to represent a graph in memory is a fundamental data-structuring problem. In the usual representations, a graph is stored by representing explicitly all vertices and all edges. The names (labels) assigned to vertices are used only to encode the edges and reveal nothing about the structure of the graph itself and hence are a “waste” of space. In this context, we present a general framework for labeling any graph so that adjacency between any two given vertices can be tested in constant time. The labeling scheme assigns to each vertex x a O (δ(x) log 2 n) bit label, where n is the number of vertices and δ(x) is x's degree. The adjacency test can be performed in seven steps and the scheme can be computed in polynomial time. The proposed graph encoding positively demonstrates its superiority over the usual representations, i.e. adjacency matrix and adjacency list representations, which require O (n log n) bit label per vertex and constant time adjacency test, and O (δ(x) log n) bit label per vertex and O ( log δ(x)) steps to test adjacency, respectively. Additionally, the labeling scheme is implicit, that is: no pointers are used.

[1]  Amos Fiat,et al.  Non-oblivious hashing , 1988, STOC '88.

[2]  Eli Upfal,et al.  A tradeoff between space and efficiency for routing tables , 1988, STOC '88.

[3]  Maurizio Talamo,et al.  A Data Structure for Lattice Representation , 1997, Theor. Comput. Sci..

[4]  Aris M. Ouksel,et al.  Implicit Data Structures for Linear Hashing Schemes , 1988, Inf. Process. Lett..

[5]  Melvin A. Breuer,et al.  An unexpected result in coding the vertices of a graph , 1967 .

[6]  Melvin A. Breuer,et al.  Coding the vertexes of a graph , 1966, IEEE Trans. Inf. Theory.

[7]  José L. Balcázar The Complexity of Searching Implicit Graphs , 1996, Artif. Intell..

[8]  Jan van Leeuwen,et al.  Compact Routing Methods: A Survey , 1994, SIROCCO.

[9]  J. IAN MUNRO,et al.  An Implicit Data Structure Supporting Insertion, Deletion, and Search in O(log² n) Time , 1986, J. Comput. Syst. Sci..

[10]  Jan van Leeuwen,et al.  Interval Routing , 1987, Computer/law journal.

[11]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[12]  Greg N. Frederickson,et al.  Optimal Message Routing without Complete Routing Tables (preliminary version). , 1986, PODC 1986.

[13]  Moni Naor,et al.  What Can be Computed Locally? , 1995, SIAM J. Comput..

[14]  Eli Upfal,et al.  A trade-off between space and efficiency for routing tables , 1989, JACM.

[15]  Maurizio Talamo,et al.  Compact Implicit Representation of Graphs , 1998, WG.

[16]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[17]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[18]  Richard B. Tan,et al.  Computer Networks with Compact Routing Tables , 1986 .

[19]  Amos Fiat,et al.  Implicit O(1) Probe Search , 1993, SIAM J. Comput..

[20]  Amos Fiat,et al.  Implicit O(1) probe search , 1989, STOC '89.

[21]  Frank Harary,et al.  Graph Theory , 2016 .

[22]  Nicola Santoro,et al.  Labelling and Implicit Routing in Networks , 1985, Computer/law journal.

[23]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[24]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[25]  Pierre Fraigniaud,et al.  Local memory requirement of universal routing schemes , 1996, SPAA '96.

[26]  Greg N. Frederickson,et al.  Efficient Message Routing in Planar Networks , 1989, SIAM J. Comput..

[27]  J. Ian Munro,et al.  Implicit Data Structures for Fast Search and Update , 1980, J. Comput. Syst. Sci..

[28]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[29]  Mihalis Yannakakis,et al.  A Note on Succinct Representations of Graphs , 1986, Inf. Control..

[30]  Jan van Leeuwen,et al.  Handbook Of Theoretical Computer Science, Vol. A , 1990 .

[31]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[32]  Avi Wigderson,et al.  Succinct Representations of Graphs , 1984, Inf. Control..

[33]  S. VitterJ.,et al.  Algorithms for parallel memory, I , 1994 .

[34]  Greg N. Frederickson,et al.  Implicit Data Structures for the Dictionary Problem , 1983, JACM.

[35]  Greg N. Frederickson,et al.  Space-Efficient Message Routing in c-Decomposable Networks , 1990, SIAM J. Comput..

[36]  Jaap-Henk Hoepman,et al.  Optimal routing tables , 1996, PODC '96.

[37]  José L. Balcázar,et al.  The Complexity of Graph Problems fore Succinctly Represented Graphs , 1989, WG.