Steepest descent methods for critical points in vector optimization problems

In this article, we present steepest descent methods for finding stationary (critical) points of vector optimization problems for maps from an Euclidean space to a Banach space with respect to the partial order induced by a closed, convex and pointed cone with a nonempty interior. Convergence of the generated sequence to a weakly efficient solution of our problem is established under some reasonable additional hypotheses.

[1]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[2]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[3]  J. Hiriart-Urruty New concepts in nondifferentiable programming , 1979 .

[4]  R. Osuna-Gómez,et al.  Invex Functions and Generalized Convexity in Multiobjective Programming , 1998 .

[5]  Jen-Chih Yao,et al.  Approximate proximal methods in vector optimization , 2007, Eur. J. Oper. Res..

[6]  Boris S. Mordukhovich,et al.  Hybrid approximate proximal algorithms for efficient solutions in vector optimization , 2011 .

[7]  Stan Uryasev,et al.  Generalized deviations in risk analysis , 2004, Finance Stochastics.

[8]  Enrico Miglierina,et al.  Critical Points Index for Vector Functions and Vector Optimization , 2008 .

[9]  Alfredo N. Iusem,et al.  A Projected Gradient Method for Vector Optimization Problems , 2004, Comput. Optim. Appl..

[10]  Alfredo N. Iusem,et al.  Proximal Methods in Vector Optimization , 2005, SIAM J. Optim..

[11]  Laura Martein,et al.  Generalized Convexity and Optimality Conditions in Scalar and Vector Optimization , 2005 .

[12]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[13]  S. Smale,et al.  Global Analysis and Economics I: Pareto Optimum and a Generalization of Morse Theory† , 1975 .

[14]  S. Smale,et al.  Exchange processes with price adjustment , 1976 .

[15]  Enrico Miglierina,et al.  Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization , 2008, Eur. J. Oper. Res..

[16]  Alberto Zaffaroni,et al.  Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..

[17]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[18]  S. Smale Global analysis and economics IV: Finiteness and stability of equilibria with general consumption sets and production , 1974 .

[19]  Marco Degiovanni,et al.  Critical point theory for vector valued functions , 2002 .

[20]  S. Smale,et al.  Global analysis and economics IIA: Extension of a theorem of Debreu , 1974 .

[21]  J. B. Hiriart-Urruty,et al.  Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..

[22]  M. Théra,et al.  Critical points for vector valued functions , 2002 .

[23]  Enrico Miglierina,et al.  Slow Solutions of a Differential Inclusion and Vector Optimization , 2004 .

[24]  S. Smale,et al.  Global analysis and economics III: Pareto Optima and price equilibria , 1974 .

[25]  B. Svaiter,et al.  A steepest descent method for vector optimization , 2005 .

[26]  A. Iusem,et al.  Full convergence of the steepest descent method with inexact line searches , 1995 .

[27]  Nelson Maculan,et al.  On the choice of parameters for the weighting method in vector optimization , 2008, Math. Program..

[28]  Boris S. Mordukhovich,et al.  Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization , 2010 .

[29]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .