Ten Misconceptions from the History of Analysis and Their Debunking
暂无分享,去创建一个
[1] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[2] David Eugene Smith,et al. A source book in mathematics , 1930 .
[3] I. Lakatos,et al. Proofs and Refutations: Frontmatter , 1976 .
[4] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[5] Karel Hrbacek,et al. Analysis with Ultrasmall Numbers , 2010, Am. Math. Mon..
[6] Antoni Malet,et al. Renaissance notions of number and magnitude , 2006 .
[7] C. Guiterrez. Plato's Ghost , 2009 .
[8] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[9] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[10] Karel Hrbacek,et al. Axiomatic foundations for Nonstandard Analysis , 1978 .
[11] Judith V. Grabiner,et al. Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus , 1983 .
[12] Paolo Mancosu,et al. The Philosophy of Mathematical Practice , 2008 .
[13] S. Yau. Mathematics and its applications , 2002 .
[14] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[15] G. Hanna,et al. Explanation and Proof in Mathematics , 2010 .
[16] Stephen W. Hawking,et al. God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .
[17] Joseph W. Dauben,et al. Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey , 1995 .
[18] Paolo Mancosu,et al. MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS: WAS CANTOR’S THEORY OF INFINITE NUMBER INEVITABLE? , 2009, The Review of Symbolic Logic.
[19] D'Alembert's proof of the fundamental theorem of algebra , 2004 .
[20] F. William Lawvere,et al. Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .
[21] I. Newton,et al. The Principia : Mathematical Principles of Natural Philosophy , 2018 .
[22] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[23] Jesper Lützen. The prehistory of the theory of distributions , 1984 .
[24] Augustin-Louis Cauchy. Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .
[25] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[26] Gottfried Wilhelm Leibniz. The labyrinth of the continuum , 2001 .
[27] V. Katz. Using the history of calculus to teach calculus , 1993 .
[28] S. Segal. Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .
[29] D. Fowler. Dedekind's Theorem: , 1992 .
[30] Walter Felscher. Bolzano, Cauchy, Epsilon, Delta , 2000, Am. Math. Mon..
[31] R. Dedekind. Stetigkeit und irrationale Zahlen , 2022 .
[32] R. Ely. Nonstandard Student Conceptions About Infinitesimals , 2010 .
[33] H. Jahnke. A History of Analysis , 2003 .
[34] E. R. Hedrick,et al. Elementary Mathematics from an Advanced Standpoint. Arithmetic. Algebra. Analysis , 1933 .
[35] Detlef Laugwitz. ON THE HISTORICAL DEVELOPMENT OF INFINITESIMAL MATHEMATICS , 1997 .
[36] THE ROLE OF PARADOXES IN THE EVOLUTION OF MATHEMATICS , 1994 .
[37] Carl B. Boyer,et al. A History of Mathematics. , 1993 .
[38] Jeremy Gray,et al. Number theory: An approach through history; from Hammurapi to Legendre , 1986 .
[39] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[40] K. D. Stroyan. Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .
[41] David Sepkoski. Nominalism and constructivism in seventeenth-century mathematical philosophy , 2007 .
[42] Paolo Mancosu. Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .
[43] André Weil,et al. Number Theory: An approach through history From Hammurapi to Legendre , 1984 .
[44] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[45] D. Laugwitz. Early delta functions and the use of infinitesimals in research , 1992 .
[46] A. Weil. Review: M. S. Mahoney, The mathematical career of Pierre de Fermat , 1973 .
[47] David Tall,et al. The Psychology of Advanced Mathematical Thinking , 2002 .
[48] Eberhard Knobloch,et al. Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.
[49] David Tall,et al. Dynamic mathematics and the blending of knowledge structures in the calculus , 2009 .
[50] W. Luxemburg. Non-Standard Analysis , 1977 .
[51] F. Cajori,et al. Mathematical Principles of Natural Philosophy and his System of the World , 1935 .
[52] M.. Essays on the Theory of Numbers I Continuity and Irrational Numbers II The Nature and Meaning of Numbers , 1901, Nature.
[53] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[54] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[55] Robert M. Anderson,et al. A non-standard representation for Brownian Motion and Itô integration , 1976 .
[56] S. Albeverio. Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .
[57] Karin U. Katz,et al. When is .999... less than 1? , 2010, The Mathematics Enthusiast.
[58] H. Jerome Keisler,et al. The Hyperreal Line , 1994 .
[59] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[60] Leif Arkeryd. Nonstandard Analysis , 2005, Am. Math. Mon..
[61] Don't take me half the way: On Berkeley on mathematical reasoning , 1993 .
[62] Bruce Pourciau,et al. Newton and the Notion of Limit , 2001 .
[63] C. Allen,et al. Stanford Encyclopedia of Philosophy , 2011 .
[64] Alexandre V. Borovik,et al. An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..
[65] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[66] M. Katz,et al. Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.
[67] Ivor Grattan-Guinness,et al. The mathematics of the past: distinguishing its history from our heritage , 2004 .
[68] Lorenzo Magnani,et al. Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.
[69] R. Dedekind. Essays on the theory of numbers , 1963 .
[70] E. Bell. The development of mathematics , 1941 .
[71] J. Bell. A primer of infinitesimal analysis , 1998 .
[72] I. Lakatos. PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.
[73] Roger North,et al. The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.
[74] P. Giordano. The ring of Fermat reals , 2010 .
[75] R. B. McClenon. A Contribution of Leibniz to the History of Complex Numbers , 1923 .
[76] D. Tall. Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.
[77] M. Crowe. Ten misconceptions about mathematics and its history , 1988 .
[78] H. Keisler. Quantifiers in Limits , 2006 .
[79] D. Tall,et al. THE TENSION BETWEEN INTUITIVE INFINITESIMALS AND FORMAL MATHEMATICAL ANALYSIS , 2011, 1110.5747.
[80] Wooster Woodruff Beman,et al. Essays on the theory of mumbers : I. Continuity and irrational numbers : II. The nature and meaning of numbers : Authorized translation by Wooster Woodruff Beman , 1963 .
[81] Alasdair Urquhart. Mathematics and Physics: Strategies of Assimilation , 2008 .
[82] J. Naets. How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining , 2010 .
[83] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[84] Kajsa Bråting,et al. A new look at E.G. Björling and the Cauchy sum theorem , 2007 .
[85] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[86] T. Koetsier. Lakatos, Lakoff and Núñez: Towards a Satisfactory Definition of Continuity , 2010 .
[87] Augustin-Louis Cauchy. Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .
[88] Christoph J. Scriba,et al. B. L. van der Waerden: A History of Algebra. From al‐Khwarizmi to Emmy Noether. Berlin/Heidelberg/New York/Tokyo: Springer‐Verlag 1985. xi, 271 Seiten, 28 Figuren. Leinen, DM 98,‐. , 1987 .
[89] D. T. Whiteside,et al. The mathematical papers of Isaac Newton , 1967 .
[90] Ekkehard Kopp,et al. On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.
[91] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[92] Kirsti Andersen. One of Berkeleys arguments on compensating errors in the calculus , 2011 .
[93] Mikhail G. Katz,et al. Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.
[94] Philip Ehrlich,et al. The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.
[95] Robert Lutz,et al. Modern Infinitesimals as a Tool to Match Intuitive and Formal Reasoning in Analysis , 2004, Synthese.
[96] J. Fourier. Théorie analytique de la chaleur , 2009 .
[97] René Taton,et al. The Principal Works of Simon Stevin , 1959 .
[98] A. Connes. Noncommutative geometry and reality , 1995 .
[99] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[100] J. Pier. Development of mathematics , 1994 .
[101] Desmond Fearnley-Sander,et al. Hermann Grassmann and the Creation of Linear Algebra , 1979 .
[102] H. Keisler. THE ULTRAPRODUCT CONSTRUCTION , 2009 .
[103] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[104] Stuart Hannabuss,et al. Encyclopedia of Philosophy (2nd edition) , 2006 .
[105] S. Smale. The fundamental theorem of algebra and complexity theory , 1981 .
[106] T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .
[107] Imre Lakatos,et al. Cauchy and the continuum , 1978 .
[108] Florian Cajori,et al. A history of mathematical notations , 1928 .
[109] Lorenzo Magnani,et al. Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .
[110] Leif Arkeryd,et al. Intermolecular forces of infinite range and the Boltzmann equation , 1981 .
[111] M. Barany. God, king, and geometry: revisiting the introduction to Cauchys Cours danalyse , 2011 .
[112] D. J. Winter. A History of Algebra. , 1988 .
[113] Per Strømholm,et al. Fermat's methods of maxima and minima and of tangents. A reconstruction , 1968 .
[114] C. Gilain. Cauchy et le cours d'analyse de l'Ecole polytechnique , 1989 .
[115] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[116] M. White. From a philosophical point of view , 2004 .
[117] Hisahiro Tamano,et al. On Rings of Real Valued Continuous Functions , 1958 .
[118] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[119] Gert Schubring,et al. Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .
[120] P. Mancosu,et al. Detleff Clüver: An Early Opponent of the Leibnizian Differential Calculus , 1990 .
[121] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[122] George Willis Cooke,et al. TRANSLATOR AND EDITOR , 2010 .
[123] M. Dehn. Die Legendre'schen Sätze über die Winkelsumme im Dreieck , 1900 .
[124] A. Cauchy. Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .
[125] H. Putnam. What is mathematical truth , 1975 .
[126] Terence Tao,et al. An Epsilon of Room, II: pages from year three of a mathematical blog , 2011 .
[127] B. L. Waerden,et al. A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .
[128] Martin Davis,et al. Applied Nonstandard Analysis , 1977 .
[129] Gian-Carlo Rota,et al. The real numbers as a wreath product , 1975 .
[130] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[131] Nicolas Bourbaki,et al. Elements of mathematics , 2004 .
[132] Vieri Benci,et al. Alpha-theory: An elementary axiomatics for nonstandard analysis , 2003 .
[133] John N. Crossley. The emergence of number , 1980 .
[134] A. Robinson. Numbers and Models , Standard and Nonstandard , 2010 .