Ten Misconceptions from the History of Analysis and Their Debunking

The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d’Alembert, Cauchy, and others.

[1]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[2]  David Eugene Smith,et al.  A source book in mathematics , 1930 .

[3]  I. Lakatos,et al.  Proofs and Refutations: Frontmatter , 1976 .

[4]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[5]  Karel Hrbacek,et al.  Analysis with Ultrasmall Numbers , 2010, Am. Math. Mon..

[6]  Antoni Malet,et al.  Renaissance notions of number and magnitude , 2006 .

[7]  C. Guiterrez Plato's Ghost , 2009 .

[8]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[9]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[10]  Karel Hrbacek,et al.  Axiomatic foundations for Nonstandard Analysis , 1978 .

[11]  Judith V. Grabiner,et al.  Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus , 1983 .

[12]  Paolo Mancosu,et al.  The Philosophy of Mathematical Practice , 2008 .

[13]  S. Yau Mathematics and its applications , 2002 .

[14]  R. H.,et al.  The Principles of Mathematics , 1903, Nature.

[15]  G. Hanna,et al.  Explanation and Proof in Mathematics , 2010 .

[16]  Stephen W. Hawking,et al.  God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .

[17]  Joseph W. Dauben,et al.  Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey , 1995 .

[18]  Paolo Mancosu,et al.  MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS: WAS CANTOR’S THEORY OF INFINITE NUMBER INEVITABLE? , 2009, The Review of Symbolic Logic.

[19]  D'Alembert's proof of the fundamental theorem of algebra , 2004 .

[20]  F. William Lawvere,et al.  Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .

[21]  I. Newton,et al.  The Principia : Mathematical Principles of Natural Philosophy , 2018 .

[22]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[23]  Jesper Lützen The prehistory of the theory of distributions , 1984 .

[24]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[25]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[26]  Gottfried Wilhelm Leibniz The labyrinth of the continuum , 2001 .

[27]  V. Katz Using the history of calculus to teach calculus , 1993 .

[28]  S. Segal Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .

[29]  D. Fowler Dedekind's Theorem: , 1992 .

[30]  Walter Felscher Bolzano, Cauchy, Epsilon, Delta , 2000, Am. Math. Mon..

[31]  R. Dedekind Stetigkeit und irrationale Zahlen , 2022 .

[32]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[33]  H. Jahnke A History of Analysis , 2003 .

[34]  E. R. Hedrick,et al.  Elementary Mathematics from an Advanced Standpoint. Arithmetic. Algebra. Analysis , 1933 .

[35]  Detlef Laugwitz ON THE HISTORICAL DEVELOPMENT OF INFINITESIMAL MATHEMATICS , 1997 .

[36]  THE ROLE OF PARADOXES IN THE EVOLUTION OF MATHEMATICS , 1994 .

[37]  Carl B. Boyer,et al.  A History of Mathematics. , 1993 .

[38]  Jeremy Gray,et al.  Number theory: An approach through history; from Hammurapi to Legendre , 1986 .

[39]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[40]  K. D. Stroyan Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .

[41]  David Sepkoski Nominalism and constructivism in seventeenth-century mathematical philosophy , 2007 .

[42]  Paolo Mancosu Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .

[43]  André Weil,et al.  Number Theory: An approach through history From Hammurapi to Legendre , 1984 .

[44]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[45]  D. Laugwitz Early delta functions and the use of infinitesimals in research , 1992 .

[46]  A. Weil Review: M. S. Mahoney, The mathematical career of Pierre de Fermat , 1973 .

[47]  David Tall,et al.  The Psychology of Advanced Mathematical Thinking , 2002 .

[48]  Eberhard Knobloch,et al.  Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.

[49]  David Tall,et al.  Dynamic mathematics and the blending of knowledge structures in the calculus , 2009 .

[50]  W. Luxemburg Non-Standard Analysis , 1977 .

[51]  F. Cajori,et al.  Mathematical Principles of Natural Philosophy and his System of the World , 1935 .

[52]  M. Essays on the Theory of Numbers I Continuity and Irrational Numbers II The Nature and Meaning of Numbers , 1901, Nature.

[53]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[54]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[55]  Robert M. Anderson,et al.  A non-standard representation for Brownian Motion and Itô integration , 1976 .

[56]  S. Albeverio Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .

[57]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[58]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[59]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[60]  Leif Arkeryd Nonstandard Analysis , 2005, Am. Math. Mon..

[61]  Don't take me half the way: On Berkeley on mathematical reasoning , 1993 .

[62]  Bruce Pourciau,et al.  Newton and the Notion of Limit , 2001 .

[63]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[64]  Alexandre V. Borovik,et al.  An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..

[65]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[66]  M. Katz,et al.  Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.

[67]  Ivor Grattan-Guinness,et al.  The mathematics of the past: distinguishing its history from our heritage , 2004 .

[68]  Lorenzo Magnani,et al.  Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.

[69]  R. Dedekind Essays on the theory of numbers , 1963 .

[70]  E. Bell The development of mathematics , 1941 .

[71]  J. Bell A primer of infinitesimal analysis , 1998 .

[72]  I. Lakatos PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.

[73]  Roger North,et al.  The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.

[74]  P. Giordano The ring of Fermat reals , 2010 .

[75]  R. B. McClenon A Contribution of Leibniz to the History of Complex Numbers , 1923 .

[76]  D. Tall Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.

[77]  M. Crowe Ten misconceptions about mathematics and its history , 1988 .

[78]  H. Keisler Quantifiers in Limits , 2006 .

[79]  D. Tall,et al.  THE TENSION BETWEEN INTUITIVE INFINITESIMALS AND FORMAL MATHEMATICAL ANALYSIS , 2011, 1110.5747.

[80]  Wooster Woodruff Beman,et al.  Essays on the theory of mumbers : I. Continuity and irrational numbers : II. The nature and meaning of numbers : Authorized translation by Wooster Woodruff Beman , 1963 .

[81]  Alasdair Urquhart Mathematics and Physics: Strategies of Assimilation , 2008 .

[82]  J. Naets How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining , 2010 .

[83]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[84]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[85]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[86]  T. Koetsier Lakatos, Lakoff and Núñez: Towards a Satisfactory Definition of Continuity , 2010 .

[87]  Augustin-Louis Cauchy Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .

[88]  Christoph J. Scriba,et al.  B. L. van der Waerden: A History of Algebra. From al‐Khwarizmi to Emmy Noether. Berlin/Heidelberg/New York/Tokyo: Springer‐Verlag 1985. xi, 271 Seiten, 28 Figuren. Leinen, DM 98,‐. , 1987 .

[89]  D. T. Whiteside,et al.  The mathematical papers of Isaac Newton , 1967 .

[90]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[91]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[92]  Kirsti Andersen One of Berkeleys arguments on compensating errors in the calculus , 2011 .

[93]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[94]  Philip Ehrlich,et al.  The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.

[95]  Robert Lutz,et al.  Modern Infinitesimals as a Tool to Match Intuitive and Formal Reasoning in Analysis , 2004, Synthese.

[96]  J. Fourier Théorie analytique de la chaleur , 2009 .

[97]  René Taton,et al.  The Principal Works of Simon Stevin , 1959 .

[98]  A. Connes Noncommutative geometry and reality , 1995 .

[99]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[100]  J. Pier Development of mathematics , 1994 .

[101]  Desmond Fearnley-Sander,et al.  Hermann Grassmann and the Creation of Linear Algebra , 1979 .

[102]  H. Keisler THE ULTRAPRODUCT CONSTRUCTION , 2009 .

[103]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[104]  Stuart Hannabuss,et al.  Encyclopedia of Philosophy (2nd edition) , 2006 .

[105]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[106]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[107]  Imre Lakatos,et al.  Cauchy and the continuum , 1978 .

[108]  Florian Cajori,et al.  A history of mathematical notations , 1928 .

[109]  Lorenzo Magnani,et al.  Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .

[110]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[111]  M. Barany God, king, and geometry: revisiting the introduction to Cauchys Cours danalyse , 2011 .

[112]  D. J. Winter A History of Algebra. , 1988 .

[113]  Per Strømholm,et al.  Fermat's methods of maxima and minima and of tangents. A reconstruction , 1968 .

[114]  C. Gilain Cauchy et le cours d'analyse de l'Ecole polytechnique , 1989 .

[115]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[116]  M. White From a philosophical point of view , 2004 .

[117]  Hisahiro Tamano,et al.  On Rings of Real Valued Continuous Functions , 1958 .

[118]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[119]  Gert Schubring,et al.  Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .

[120]  P. Mancosu,et al.  Detleff Clüver: An Early Opponent of the Leibnizian Differential Calculus , 1990 .

[121]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[122]  George Willis Cooke,et al.  TRANSLATOR AND EDITOR , 2010 .

[123]  M. Dehn Die Legendre'schen Sätze über die Winkelsumme im Dreieck , 1900 .

[124]  A. Cauchy Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .

[125]  H. Putnam What is mathematical truth , 1975 .

[126]  Terence Tao,et al.  An Epsilon of Room, II: pages from year three of a mathematical blog , 2011 .

[127]  B. L. Waerden,et al.  A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .

[128]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[129]  Gian-Carlo Rota,et al.  The real numbers as a wreath product , 1975 .

[130]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[131]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[132]  Vieri Benci,et al.  Alpha-theory: An elementary axiomatics for nonstandard analysis , 2003 .

[133]  John N. Crossley The emergence of number , 1980 .

[134]  A. Robinson Numbers and Models , Standard and Nonstandard , 2010 .